

UNO CONSTRUCTIONS PTY LTD

Detailed Site Investigation

41-43 Forbes Street, Liverpool NSW

E24270.E02.Rev0 4 July 2019

Document Control

Report Title:	Detailed Site Investigation
---------------	-----------------------------

Report No: E24270.E02.Rev0

t
Douroudis structions Pty Ltd '49, Kogarah NSW 2217
ia I, 55 Miller Street, IT NSW 2009
7 1 1

Author

Technical Reviewer

A

Ewoelder

Lan Ye Environme	ntal Engineer	Emmanuel Woelders Environmental Scientist – Project	t Manager
Revision	Details	Date	Amended By
0	Original	4 July 2019	

© 2019 El Australia (El) ABN: 42 909 129 957

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by EI.

Table of Contents

Page Number

EX	ECUI	IVE SUI	MMARY	1
1.	ΙΝΤΙ	RODUCT	ΓΙΟΝ	1
	1.1	Backgro	ound and Purpose	1
	1.2	Propose	ed Development	1
	1.3	Regulat	tory Framework	1
	1.4	Project	Objectives	1
	1.5	Scope of	of Works	2
		1.5.1	Desktop Study	2
		1.5.2	Field Work & Laboratory Analysis	2
		1.5.3	Data Analysis and Reporting	2
2.	SITE	E DESCF	RIPTION	3
	2.1	Propert	y Identification, Location and Physical Setting	3
	2.2	Surrour	nding Land Use	3
	2.3	Regiona	al Setting	4
	2.4	Ground	water Bore Records and Groundwater Use	5
	2.5	Site Wa	alkover Inspection	5
3.	PRE		INVESTIGATIONS	6
	3.1	Availab	le documents	6
	3.2	Site His	story Overview	6
	3.3	Finding	s and Recommendation	6
4.	CON	NCEPTU	AL SITE MODEL	7
	4.1	Subsurf	face Conditions	7
	4.2	Potentia	al Contamination Sources	7
	4.3	Chemic	cals of Concern	7
	4.4	Potentia	al Sources, Exposure Pathways and Receptors	7
	4.5	Data Ga	aps	9
5.	SAN	IPLING,	ANALYTICAL AND QUALITY PLAN (SAQP)	10
	5.1	Data Qu	uality Objectives (DQO)	10
	5.2	Data Qu	uality Indicators	13
6.	ASS	SESSME	NT METHODOLOGY	14
	6.1	Samplir	ng Rationale	14
	6.2	Assessi	ment Criteria	14
	6.3	Soil Inv	estigation	15
7.	DAT	A QUAL	LITY ASSESSMENT	17
8.	RES	SULTS		18

	8.1	Soil Inve 8.1.1 8.1.2	stigation Results Site Geology and Subsurface Conditions Field Observations and PID Results	18 18 18
	8.2	Laborato	bry Analytical Results	18
9.	. SITE CHARACTERISATION 2			21
	9.1	Review of	of Conceptual Site Model	21
	9.2	Soil Impa	acts	21
10.	CON	CLUSIO	NS	22
11.	1. RECOMMENDATIONS23			
12.	2. STATEMENT OF LIMITATIONS 24		24	
RE	REFERENCES		25	
AB	ABBREVIATIONS		26	

Schedule of Tables

Site Identification, Location and Zoning	3
Surrounding Land Uses	3
Regional Setting Information	4
Preliminary Conceptual Site Model	8
Summary of Project Data Quality Objectives	11
Data Quality Indicators	13
Adopted Investigation Levels for Soil	14
Summary of Soil Investigation Methodology	15
Generalised Subsurface Profile (m bgl)	18
Summary of Soil Analytical Results	19
	Site Identification, Location and Zoning Surrounding Land Uses Regional Setting Information Preliminary Conceptual Site Model Summary of Project Data Quality Objectives Data Quality Indicators Adopted Investigation Levels for Soil Summary of Soil Investigation Methodology Generalised Subsurface Profile (m bgl) Summary of Soil Analytical Results

Appendices

APPENDIX A - FIGURES

- A.1 Site Locality Plan
- A.2 Sampling location Plan

APPENDIX B - PROPOSED DEVELOPMENT PLANS

APPENDIX C - SUMMARY TABLE

APPENDIX D - SITE PHOTOGRAPHY

APPENDIX E - GROUNDWATER BORE SEARCH

APPENDIX F - BOREHOLE LOGS

APPENDIX G - PID CALIBRATION SHEET

APPENDIX H - CHAIN OF CUSTODY AND SAMPLE RECEIPT FORMS

APPENDIX I - LABORATORY ANALYTICAL REPORTS

APPENDIX J - QA/QC ASSESSMENT

- J.1 Site location
- J.2 Field QA/QC Data Evaluation
- J.3 LABORATORY QA/QC

APPENDIX K - LABORATORY QA/AC POLICIES AND DQOS

Executive Summary

Background

Uno Constructions Pty Ltd engaged El Australia (El) to conduct a Detailed Site Investigation (DSI) for the former industrial property located at 41-43 Forbes Street, Liverpool NSW ('the site').

This investigation follows on from the Preliminary Site Investigation previously prepared by EI in a report titled "*Stage 1 Environmental Site Assessment, 41-43 Forbes Street, Liverpool, NSW*" (EI Report No. E1379.1 dated 30 May 2011). This report was prepared in support of a Development Application (DA) to Liverpool City Council, for the purpose of enabling the developer to meet its obligations under the Contaminated Land Management Act 1997 (CLM Act), for the assessment and management of contaminated soil.

Based on the proposed development plans provided by the client (**Appendix B**), site redevelopment involves the construction of a multi-storey mixed commercial and residential apartment building overlying a two level basement car park.

Objectives

The primary objectives of this investigation were to:

- Evaluate the potential for site contamination on the basis of historical land uses, anecdotal and documentary evidence of possible pollutant sources; and
- To investigate the degree of any potential contamination by means of intrusive sampling and laboratory analysis, for relevant contaminants of concern.

A further objective, should site contamination be confirmed, was to make recommendations for the appropriate management of any contaminated soils.

Findings

The work was conducted with reference to the regulatory framework outlined in **Section 1.3** of this report and assessment findings indicated the following:

- The site had mainly been used for residential purposes since 1950s.
- During the site inspection on the 27 June 2019 all former structures had been demolished and the site was vacant land. Asbestos fragments were observed across the site surface and were likely sourced from former building structures.
- The sub-surface layers observed at six test borehole locations across of the site during this
 investigation comprised of fill materials (max. thickness 0.3m), overlying residual clays and
 silt.
- Laboratory results for soil samples collected reported concentrations below the adopted SILs, with the exception of asbestos in sample BH106_0.1-0.2.

Conclusions

Based on the findings of this DSI and with consideration of the Statement of Limitations (**Section 12**), EI concluded that surficial asbestos contamination was identified. The site can be made suitable for the proposed development, subject to implementing the recommendations specified in **Section 11**.

Recommendations

In view of the findings of this investigation and in accordance with the NEPC (2013) guidelines, it is considered that the site can be made suitable for the proposed mixed commercial and residential development on completion of the following recommendations:

- Asbestos Containing Material (ACM) was found across the surface of the site and in shallow fill at BH106. In light of this finding and the thin nature of fill soils identified (max. thickness 0.3m), site wide fill should be classified in accordance with the NSW EPA (2014) Waste Classification Guidelines, excavated and disposed of to an appropriately licensed landfill. Prior to removal preparation of an Asbestos Removal Management Plan must be prepared by the environmental consultant and followed by the excavation contractor to ensure all asbestos impacted fill soils are safely removed from the site and appropriately management;
- Following offsite disposal of site wide fill, a site walkover inspection and subsequent surface validation is required to validate the site is free of fill material and natural clay exposed;
- Preparation of an asbestos clearance report by a suitably qualified environmental consultant, certifying that all asbestos impacted fill soils have been removed from the site.
- Any soil materials being removed from site (including virgin excavated natural materials or VENM) be classified for off-site disposal in accordance the EPA (2014) Waste Classification Guidelines;
- Any material being imported to the site should be assessed for potential contamination, in accordance with NSW EPA guidelines, as being suitable for the intended use or be classified as virgin excavated natural material (VENM); and
- Should unexpected finds (contamination) be encountered during redevelopment works a qualified environmental consultant be engaged to inspect the finds and offer the appropriate guidance.

1. Introduction

1.1 Background and Purpose

Uno Constructions Pty Ltd engaged El Australia Pty Ltd (El) to conduct a Detailed Site Investigation (DSI) at 41-43 Forbes Street, Liverpool NSW ('the site').

The site is located approximately 26 km southwest of the Sydney central business district (**Figure 1**). It comprises two lots (Lot 4 and Lot 5 in DP37806), situated within the Local Government Area of Liverpool City Council, and covers a total area of 1,189m² (**Figure 2**). At the time of conducting this DSI, the land was vacant land.

This investigation follows on from the Preliminary Site Investigation previously prepared by EI in a report titled "*Stage 1 Environmental Site Assessment, 41-43 Forbes Street, Liverpool, NSW*" (EI Report No. E1379.1 dated 30 May 2011). This report was prepared in support of a Development Application (DA) to Liverpool City Council, for the purpose of enabling the developer to meet its obligations under the Contaminated Land Management Act 1997 (CLM Act), for the assessment and management of contaminated soil.

1.2 Proposed Development

Based on the proposed development plans provided by the client (**Appendix B**), site redevelopment involves the construction of a multi-storey mixed commercial and residential apartment building overlying a two level basement car park.

1.3 Regulatory Framework

The following regulatory framework and guidelines were considered during the preparation of this report:

- EPA (2017) Guidelines for the NSW Site Auditor Scheme (3rd Edition);
- EPA (1995) Sampling Design Guidelines;
- NEPC (2013) Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater,
- NEPC (2013) Schedule B(2) Guideline on Site Characterisation;
- Contaminated Land Management Act 1997;
- State Environment Protection Policy 55 (SEPP 55) Remediation of Land;
- Liverpool Local Environmental Plan 2008; and
- OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites.

1.4 Project Objectives

The main objectives of this investigation were therefore to:

- Evaluate the potential for site contamination on the basis of historical land uses, anecdotal and documentary evidence of possible pollutant sources; and
- To investigate the degree of any potential contamination by means of intrusive sampling and laboratory analysis, for relevant contaminants of concern.

A further objective, should site contamination be confirmed, was to make recommendations for the appropriate management of any contaminated soils.

1.5 Scope of Works

In order to achieve the above objectives and in keeping the project cost-effective while generally complying with the OEH (2011) guidelines for consultants reporting on contaminated sites, the scope of works was as follows:

1.5.1 Desktop Study

- A review of relevant topographical, geological, hydrogeological and soil landscape maps for the project area;
- Review of all previous environmental reports;
- A search of NSW EPA Land Information records under the Contaminated Land Management Act (1997) and Protection of the Environment Operations Act (1997);
- A review of existing underground services on site.

1.5.2 Field Work & Laboratory Analysis

• A detailed site walkover inspection;

• Drilling of boreholes at six locations (BH101 to BH106) across the site in a grid like pattern, in accordance with the minimum sampling protocol recommended under EPA (1995);

• Multiple level soil sampling within fill and natural soils at each test bore; and

• Laboratory analysis of selected soil samples for relevant analytical parameters as determined from the site history survey and field observations during the investigation programme.

1.5.3 Data Analysis and Reporting

This DSI report has been prepared to document desk study findings, the conceptual site model, data quality objectives, investigation methodologies and results. The report also provides a record of observations made during the detailed site walkover inspection, borehole logs and a discussion of laboratory analytical results in regards to potential risks to human health, the environment and the aesthetic uses of the land.

2. Site Description

2.1 Property Identification, Location and Physical Setting

The site identification details and associated information are presented in **Table 2-1**, while the site locality is shown in **Figure 1**.

Table 2-1 Site Identification, Location and Zoni	ing
--	-----

Attribute	Description
Street Address	41-43 Forbes Street, Liverpool NSW
Location Description	Approximately 26 km southwest of Sydney CBD, bounded by unit building (north and west), Forbes Street (east) and Central District Ambulance Liverpool Branch (south).
Coordinates	Northeast corner of site: GDA94-MGA55
	Easting: 308675.673
	Northing: 6245032.485
	(Source: http://maps.six.nsw.gov.au)
Site Area	1,189m ²
Site Owner	Uno Constructions Pty Ltd
Lot and Deposited Plan (DP)	Lot 4 & 5 in DP37806
State Survey Marks	Two Permanent Mark (PM) are situated in close proximity (<100 m) to the site:
	PM52192 on the Goulburn Street; and
	PM51958 on the corner of Campbell Street and Forbes Street
	(Source: http://maps.six.nsw.gov.au)
Local Government Authority	Liverpool City Council
Parish	St Luke
County	Cumberland
Current Zoning	R4 – High Density Residential (Liverpool Local Environmental Plan 2008)
Current Land Uses	Vacant land.

2.2 Surrounding Land Use

The site is situated within an area of High Density Residential (R4) land zoning. Current uses of surrounding land are described in **Table 2-2**.

Table 2-2 Surrounding Land Uses

Direction Relative to Site	Land Use Description	Sensitive Land Receptors
North	Medium to high density residential properties, followed by St Raphael Church.	Residential properties (adjacent to north) Church staff and user (<70m)

Direction Relative to Site	Land Use Description	Sensitive Land Receptors
South	Central District Ambulance Liverpool Branch (abandoned during this investigation) followed a medical research centre	Medical research centre staff (<20m)
	(Ingham Institute) and Liverpool Hospital.	Hospital staff and patients (<75m)
West	Medium to high density residential properties, followed by Goulburn Street.	Residential properties (adjacent to west)
East	Forbes Street, followed by Liverpool Girls High School	School staff and students (<20m)

2.3 Regional Setting

Regional topography, geology, soil landscape and hydrogeological information are summarised in **Table 2-3**.

Table 2-3	Regional	Setting	Information
-----------	----------	---------	-------------

Attribute	Description
Topography	Based on the provided survey plan, the site declines towards Forbes Street, from RL 13.8m AHD at north-western portion, to RL 11.65m AHD at south-eastern corner of the site (Ref. GEOMAP SERVICES PTY LTD).
	According to Chapman and Murphy, the reginal topography includes gently undulating rises with local relief between 10-30m. Slopes are generally <5% but occasionally up to 10%. Crests and ridges are broad (200-600m) and rounder with convex upper slopes grading into concave lower slopes and broad drainage depressions and valley flats. Rock outcrop is absent.
Site Drainage	As most areas of the site comprise exposed soils, rain water is expected to infiltrate directly into the sub-soils. Any stormwater / flood overflow is likely to flow towards the east consistent, with the general slope of the site.
Regional Geology	Information on regional sub-surface conditions, referenced from the Department of Mineral Resources geological map Penrith 1:100,000 Geological Series Sheet 9030 (DMR, 1991), indicated that the site overlies Wianamatta group Bringelly Shale (Rwb).
Soil Landscapes	The Soil Conservation Service of NSW Soil Landscapes of the Penrith 1:100,000 Sheet (Hazelton, Bannerman and Tillie, 1989), indicated that the site overlies a Residual Landscape – Blacktown (bt). Soils are shallow to moderately deep (<100cm) Red Podzolic Soils and Brown Podzolic Soils on crests, upper slopes and well-drained areas and deep (150-300cm) Yellow Podzolic Soils and Soloths on lower slopes and in drainage depressions and localised areas of poor drainage. Limitations include moderately reactive highly plastic subsoil, low soil fertility and poor soil drainage.
Acid Sulfate Soil Risk	With reference to the Prospect / Parramatta River Acid Sulfate Soil Risk Map (1:25,000 scale; Murphy, 1997), the subject land lies within the map class description of ' <i>No Known Occurrence</i> '.
	With reference to the Liverpool Local Environmental Plan 2008 Acid Sulfate Soils (ASS) map (ASS-011) the site is mapped as <i>Class 5</i> Acid Sulfate Soils.
	In such cases, acid sulfate soils (ASS) are not known or expected to occur and

Attribute	Description
	"land management activities are not likely to be affected by ASS materials."
Nearest Surface Water Feature	The nearest watercourse is Georges River located approximately 500 metres south-east of the site, which flows into Botany Bay.
Groundwater Flow Direction	Groundwater flow direction in the vicinity of the site is inferred to be south-east towards the Georges River.

2.4 Groundwater Bore Records and Groundwater Use

An online search for registered groundwater bores was conducted by EI on the 2 July 2019 through the NSW Office of Water (Ref. http:// realtimedata.water.nsw.gov.au/water.stm). There were no registered bores within 500m of the site as shown in **Appendix E**.

2.5 Site Walkover Inspection

Site observations were recorded during a site walkover inspection of the site conducted on 27 June 2019. The summary of site observations is detailed below.

With reference to the photographs taken during the inspection (Ref. **Appendix D**), pertinent site observations were summarised as follows:

- The site was a vacant land. The site was covered by overgrown grass.
- Fibre-cement pieces were observed on the surface across the site.
- Surrounding land uses was mainly residential to the north and west, high school to the east and medical research centre to the south.
- No unusual odours were detected during the inspection.
- No evidence that an underground petroleum storage system (UPSS) was observed.

3. Previous Investigations

3.1 Available documents

Previous environmental investigation:

 Stage 1 Environmental Site Assessment, 41-43 Forbes Street, Liverpool, NSW, by Environmental Investigation, (Ref. No. E1379.1 dated 30 May 2011).

3.2 Site History Overview

Historical aerial photography indicate the site appeared to have been bushland/vacant land until sometime between 1951 and 1961 when residential dwellings were constructed on the site with associated driveways and yards. The surrounding properties to the north, south and west appeared to have been established for residential or light commercial use at various stages in time.

Land titles search indicate the site to have been owned by a number of individuals since 1898 and mainly used for residential purposes.

The site or sites in close proximity were free of statutory notices issued by the NSW Environment Protection Authority (EPA) under the Contaminated Land Management Act 1997 and the Protection of the Environment Operations Act 1997.

3.3 Findings and Recommendation

On the basis of site history information collected and the site walkover inspection during Stage 1 Environmental Site Assessment, potential Areas of Environmental Concern (AEC) and Contaminants of Concern were identified as:

- The entire site where some hazardous building demolition rubble and asbestos fragments may located in surface soils (AEC1); and
- Imported fill across the site for levelling purposes (AEC 2).

In view of the findings of the Stage 1 ESA, it was concluded that further assessment (Stage 2 ESA) is required to confirm that the site soils would not pose a risk to users of the site.

4. Conceptual Site Model

In accordance with NEPC (2013) *Schedule B2 – Guideline on Site Characterisation* and to aid in the assessment of data collection for the site, EI developed a preliminary conceptual site model (CSM) assessing plausible pollutant linkages between potential contamination sources, migration pathways and receptors. The CSM provides a framework for the review of the reliability and useability of the data collected and to identify data gaps in the existing site characterisation.

4.1 Subsurface Conditions

Based on the site visit on 27 June 2019, the subsurface conditions of the site were expected to be a fill layer, over residual soils.

4.2 Potential Contamination Sources

On the basis of site history and search findings (described in **Section 3**), EI considered the potential chemical hazards and onsite contamination sources to be as follows:

- Imported fill soils of unknown origin distributed across the site; and
- Hazardous materials, including potential asbestos-containing materials (ACM), from the demolished buildings.

4.3 Chemicals of Concern

Based on the findings of the site contamination appraisal, the chemicals of concern (COC) at the site were considered to be:

 Soil – heavy metals (HM), total recoverable hydrocarbons (TRH), the monocyclic aromatic hydrocarbon compounds benzene, toluene, ethyl-benzene and xylenes (BTEX), polycyclic aromatic hydrocarbons (PAH), organochlorine and organophosphorus pesticides (OCP/ OPP), polychlorinated biphenyls (PCB) and asbestos.

4.4 Potential Sources, Exposure Pathways and Receptors

Potential contamination sources, exposure pathways and human and environmental receptors that were considered relevant for this investigation are summarised in **Table 4-1**, along with a qualitative assessment of the potential risks posed by complete exposure pathways.

Table 4-1 Preliminary Conceptual Site Model

Site Area	Subsurface Profile	Potential Sources	Potential Contaminants	Media	Sensitive Receptor	Migration & Exposure Pathways	Potential Risk of Complete Exposure Pathway
Site footprint	Potentially impacted fill over the residual clay soils.	Imported filling	Heavy Metals, TRH, BETX, PAH, OCP, OPP and Asbestos	Soils	Future residents, construction workers	Seepage into the subsurface soils. Dermal Contact Ingestion Inhalation	Н
Site footprint	Surface soil	Building demolition rubble from the former buildings	Asbestos	near surface soils	Future residents, construction workers	Dermal Contact Ingestion Inhalation	Н

Note 1 L = Low Risk; M = Moderate Risk; H = High Risk

4.5 Data Gaps

Based on information from the site walkover inspection, previous environmental investigations and site history review, EI considered a programme of intrusive investigation was warranted to conduct targeted sampling at locations of known, potential sources of contamination (as listed in **Section 4.2**), with systematic sampling coverage in site areas where operational site history was not documented.

5. Sampling, Analytical and Quality Plan (SAQP)

The SAQP ensured that the data collected during intrusive works at the site were representative and provided a robust basis for site assessment decisions. The SAQP included the following:

- Data quality objectives, including a summary of the objectives of the DSI;
- Investigation (sampling) methodology, including the media to be sampled, details of analytes and parameters to be monitored and a description of intended sampling points;
- Field screening methods;
- Laboratory analysis methods;
- Sample handling, preservation and storage; and
- Analytical QA/QC.

5.1 Data Quality Objectives (DQO)

In accordance with the USEPA (2006) *Data Quality Assessment* and the EPA (2017) *Guidelines for the NSW Site Auditor Scheme*, the process of developing Data Quality Objectives (DQO) was used by the EI assessment team to determine the appropriate level of data quality needed for the specific data requirements of the project. The DQO process that was applied for this investigation is documented in **Table 5-1**.

Table 5-1 Summary of Project Data Quality Objectives

DQO Steps	Details	Comments (changes during investigation)
1. State the Problem Summarise the contamination problem that will require new environmental data, and identify the resources available to resolve the problem; develop a conceptual site model	 The site is to be redeveloped into a residential apartment building. Previous investigation, historical information and site inspection observations identified the potential for contamination due to various, possible sources, as listed in Section 5. The investigation must provide supportive information on the environmental conditions of the site to determine the site's suitability for the proposed use. 	-
2. Identify the Goal of the Study (Identify the decisions)Identify the decisions that need to be made on the contamination problem and the new environmental data required to make them	 Based on the objectives outlined in Section 1.4, the following decisions are needed: Has the site been adequately characterised with sufficient and appropriate sampling coverage (vertical and lateral) to assess for the presence of potential contamination sources? Has the nature, source and extent of any onsite impacts (soil and/or groundwater) been defined? What influence do site-specific, geologic and hydrogeological conditions have on the fate and transport of any impacts that may be identified? Does the degree of impacts coupled with the fate and transport of identified contaminants represent an unacceptable risk to identified human and/or environmental receptors on or offsite? Does the collected data provide sufficient information to allow the selection and design of an appropriate remedial strategy, assuming remedial action is necessary? If not, what are the remaining data gaps requiring closure? 	-
 3. Identify Information Inputs (Identify inputs to decision) Identify the information needed to support any decision and specify which inputs require new environmental measurements 	 Inputs to the decision making process include: Proposed development plans and intended land use; Previous investigation presented in Section 3. Areas of concern identified during the site inspection, prior to intrusive investigations. National (NEPC, 2013) and State-based (NSW EPA, various) environmental guidelines. Investigation results to verify the presence of onsite contamination and to evaluate the risks posed to potential, sensitive receptors. Relevant COPCs (discussed in Section 4.3), to be used for laboratory analysis of selected soil and creek water samples. 	-
4. Define the Boundaries of the Study Specify the spatial and temporal aspects of the environmental media that the data must represent to support decision	 Lateral – The investigation will be conducted within the cadastral site boundaries, which define the extent of the investigation, as indicated on Figure 2. Vertical – Investigations will be advanced to the depth of residual soils or bedrock. Temporal – The findings of this assessment will hold true for as long as the site use remains passive in nature; that is, for as long as the site is used for the proposed use and there are no activities taking place onsite or on immediately adjacent (upgrading) properties that may 	-

DQO Steps	Details	Comments (changes during investigation)
	compromise onsite environmental conditions.	
 5. Develop the Analytic Approach (Develop a decision rule) To define the parameter of interest, specify the action level, and integrate previous DQO outputs into a single statement that describes a logical basis for choosing from alternative actions 	 The decision rules for the investigation were: If the concentrations of contaminants in the soil data exceed the adopted criteria; then assess the need to further investigate the extent of impacts onsite. Decision criteria for QA/QC measures are defined by the Data Quality Indicators (DQI) in Table 5-2. 	-
6. Specify Performance or Acceptance Criteria (Specify limits on decision errors) Specify the decision-maker's acceptable limits on decision errors, which are used to establish performance goals for limiting uncertainties in the data	 Specific limits for this project were in accordance with National and NSW EPA guidance, and appropriate indicators of data quality and standard procedures for field sampling and handling. This included the following points to quantify tolerable limits: The null hypothesis for the investigation is that: The 95% Upper Confidence Limit (UCL) of the mean for chemicals of concern exceed land use criteria (presented in Section 6.2). Sampling on a 10 m grid will allow detection of a circular hotspot with a nominal diameter of 12 m with 95% certainty. The acceptance of the site was based on the probability that: The 95% UCL of the mean will satisfy the given site criterion. Therefore a limit on the decision error was 5% that a conclusive statement may be incorrect. The standard deviation of the results was less than 50% of the relevant remediation acceptance criterion. No single result exceeded the land use criteria by 250% or more. Soil concentrations for chemicals of concern that were below investigation criteria made or approved by the NSW EPA were treated as acceptable and indicative of suitability for the proposed land use(s). 	-
7. Develop the Detailed Plan for Obtaining Data (Optimise the design for obtaining data) Identify the most resource-effective sampling and analysis design for general data that are expected to satisfy the DQOs	 6 soil sampling locations, distributed in a systematic pattern across the site. An upper soil profile sample was collected at each borehole location and tested for chemicals of concern, to assess the environmental condition of the fill layer, and for potential impacts from historical, above-ground activities. Further sampling was also performed in deeper soil layers. Samples were selected for analytical testing based on field observations (including visual and olfactory evidence). 	-

5.2 Data Quality Indicators

To ensure that the investigation data were of an acceptable quality, the investigation data set was assessed against the data quality indicators (DQI) outlined in **Table 5-2**, which related to both field and laboratory-based procedures. The assessment of data quality is discussed in **Section 7**.

Table	5-2	Data	Quality	Indicators	

Data Quality Objective	Data Quality Indicator	Acceptable Range
Accuracy	Field – Trip blank (laboratory prepared) Laboratory – Laboratory control spike and matrix spike	< laboratory limit of reporting (LOR) Prescribed by the laboratories
Precision	Field – Blind replicate and spilt duplicate Laboratory – Laboratory duplicate and matrix spike duplicate	< 30 % relative percentage difference (RPD [%]) Prescribed by the laboratories
Representativeness	Field – Trip blank (laboratory prepared) Laboratory – Method blank	< laboratory limit of reporting (LOR) Prescribed by the laboratories
Completeness	Completion (%)	-

6. Assessment Methodology

6.1 Sampling Rationale

With reference to the preliminary CSM described in **Section 4**, soil investigation works were planned in accordance with the following rationale:

- Sampling from 6 test bore locations, located using systematic sampling pattern, to characterise *in situ* soils; and
- Laboratory analysis of representative soil samples for the identified chemicals of concern.

6.2 Assessment Criteria

The criteria adopted for this project are outlined in **Table 6-1**. These were selected from published guidelines that are endorsed by national and state regulatory authorities, with due consideration of the exposure scenario that is expected for various parts of the site, the likely exposure pathways and the identified potential receptors.

Environmental Media	Adopted Guidelines	Rationale
Soil	NEPC (2013) Soil HILs, HSLs, EILs/ESLs and Management Limits for TRHs	Soil Health-based Investigation Levels (HILs) All samples were assessed against the NEPC (2013) HIL-B thresholds for residential sites with minimal opportunities for soil
		access. Soil Health-based Screening Levels (HSLs)
		The NEPC (2013) Soil HSL-D thresholds for commercial and industrial sites for vapour intrusion were applied, to assess potential human health impacts from residual vapours resulting from petroleum, BTEX and naphthalene.
		Soils asbestos results were assessed against the NEPC (2013) Soil HSL thresholds for "all forms of asbestos".
		Ecological Investigation Levels (EILs) / Ecological Screening Levels (ESLs)
		EILs / ESLs were considered relevant for any retained deep soils on the site. EILs / ESLs only apply to the top 2 m (root zone). The derived EIL criteria presented by EI are based on the addition of site specific Added Contaminant Limit (ACL) criteria and the Ambient Background Concentration (ABC) for an old low traffic residential suburb. The adopted ESL criteria presented by EI are based on conservative fine grained criteria.
		Management Limits for Petroleum Hydrocarbons
		Where the HSLs were exceeded for petroleum hydrocarbons, soil samples were assessed against the NEPC (2013) <i>Management Limits</i> for the TRH fractions F1 – F4 to assess propensity for phase-separated hydrocarbons (PSH), fire and explosive hazards and adverse effects on buried infrastructure.

Table 6-1 Adopted Investigation Levels for Soil

For the purposes of this investigation, the adopted soil assessment criteria are referred to as the Soil Investigation Levels (SILs). SILs are presented alongside the analytical results in the corresponding summary tables, which are discussed in **Section 8**.

6.3 Soil Investigation

The soil investigation works conducted at the site are described in **Table 6-2**. Test bore locations are illustrated in **Figure 2**.

 Table 6-2
 Summary of Soil Investigation Methodology

Activity/Item	Details
Fieldwork	The field work was conducted on 27 June 2019 and comprised 6 test bores.
Drilling Method and Investigation Depth	The test bores were drilled using a hand auger. Final bore depths ranged from 0.5 mBGL to 0.7 mBGL.
Soil Logging	Drilled soils were classified in the field with respect to lithological characteristics and evaluated on a qualitative basis for odour and visual signs of contamination. Soil classifications and descriptions were based on Unified Soil Classification System (USCS) and Australian Standard (AS) 4482.1-2005. Bore logs are presented in Appendix F .
Field Observations	A summary of field observations is provided, as follows:
(including visual and	 Fibre cement sheet fragments were observed on the surface.
potential contamination)	 No signs of ash or charcoal materials were detected in any of the drilled boreholes.
	No visual signs of oil staining were observed.
	 No suspicious odours were detected during any stage of the field investigation programme.
Soil Sampling	Soil samples were collected using a dry grab method (unused, dedicated nitrile gloves) and placed into laboratory-supplied, acid-washed, solvent-rinsed glass jars.
	Blind field duplicates were separated from the primary samples and placed into glass jars.
	A small amount of duplicate was collected from each soil sample and placed into a zip-lock bag for Photo-ionisation Detector (PID) screening.
	A small amount of duplicate was separated from all fill samples and placed into a zip-lock bag for asbestos analysis.
Sample Preservation	Samples were stored in a refrigerated (ice-filled) chest, whilst on-site and in transit to the laboratory. All samples were submitted and analysed within the required holding period, as documented in laboratory reports discussed in a later section.
Management of Soil Cuttings	Soil cuttings were used as backfill for completed boreholes.
Quality Control and Laboratory Analysis	Soil samples were submitted for analysis of previously-identified COPC by SGS Laboratories (SGS). QA/QC testing comprised intra-laboratory duplicates ('field duplicates') tested blind by SGS and an inter-laboratory split field duplicate tested by Envirolab Services (Envirolab). All samples were transported under strict Chain- of-Custody (COC) conditions and COC certificates and laboratory sample receipt documentation were provided to El for confirmation purposes, as discussed in Section 8 .
Soil Vapour Screening	Screening for potential VOCs in collected soil samples was conducted using a Photo-ionisation Detector (PID), fitted with a 10.9 eV lamp, which was calibrated

Activity/Item	Details
	immediately prior to sampling. PID results were low, ranging from 0.0 to 0.2 ppm. PID readings for each sample from the test boreholes are presented in the test borehole logs (Appendix F). The PID calibration certificate is included Appendix G .

7. Data Quality Assessment

The assessment of data quality is defined as the scientific and statistical evaluation of environmental data to determine if these data meet the objectives of the project (Ref. USEPA 2006). Data quality assessment includes an evaluation of the compliance of the field sampling and laboratory analytical procedures and an assessment of the accuracy and precision of these data from the laboratory quality control measurements obtained.

The data quality assessment process for this assessment included a review of analytical procedures to confirm compliance with established laboratory protocols and an assessment of the accuracy and precision of analytical data from a range of quality control measurements. The QC measures generated from the field sampling and analytical program were as follows:

- suitable records of fieldwork observations including borehole logs;
- relevant and appropriate sampling plan (density, type, and location);
- use of approved and appropriate sampling methods;
- preservation and storage of samples upon collection and during transport to the laboratory;
- complete field and analytical laboratory sample COC procedures and documentation;
- sample holding times within acceptable limits;
- use of appropriate analytical procedures and NATA-accredited laboratories; and
- required LOR (to allow for comparison with adopted IL);
- frequency of conducting quality control measurements;
- laboratory blanks;
- field duplicates;
- laboratory duplicates;
- matrix spike/matrix spike duplicates (MS/MSDs);
- surrogates (or System Monitoring Compounds);
- analytical results for replicated samples, including field and laboratory duplicates and interlaboratory duplicates, expressed as Relative Percentage Difference (RPD); and
- checking for the occurrence of apparently unusual or anomalous results, e.g. laboratory results that appear to be inconsistent with field observations or measurements.

The findings of the data quality assessment in relation to the soil investigations at the site are discussed in detail in **Appendix J**. QA/QC policies and DQOs are presented in **Appendix K**.

On the basis of the analytical data validation procedure employed the overall quality of the soil analytical data produced for the site were considered to be of an acceptable standard for interpretive use.

8. Results

8.1 Soil Investigation Results

8.1.1 Site Geology and Subsurface Conditions

The general site lithology encountered during the drilling of the boreholes may be described as a layer of anthropogenic filling overlying residual clay and silt. The geological information obtained during the investigation is summarised in **Table 8-1** and borehole logs from these works are presented in **Appendix F**.

Depth to top and bottom of layer Layer Description (m bgl) Fill Silty Clay, medium plasticity, grey, with rootlets, no 0.0 - 0.3odour. Reworked Silty Clay, high plasticity, brown, no odour. 0.0 - 0.2Residual Clayey silt, low plasticity, pale brown, with ironstone 0.2 - 0.7 +soils fragments, no odour. Silty Clay, high plasticity, brown, no odour. 0.1 - 0.7 +

 Table 8-1
 Generalised Subsurface Profile (m bgl)

Note 1 + Termination depth of borehole.

8.1.2 Field Observations and PID Results

Soil samples were obtained from the test bores at various depths ranging between 0.0m to 0.5mBGL. All examined soil samples were evaluated on a qualitative basis for odour and visual signs of contamination (e.g. hydrocarbon odours, oil staining, petrochemical filming, asbestos fragments, ash, and charcoal) and the following observations were noted:

- No visual or olfactory evidence of hydrocarbon impacts were noted at any of the borehole locations;
- Low VOC readings were identified by the PID screening of the soil headspace samples, ranging from 0.0 to 0.2 parts per million (ppm). The PID results are shown in the borehole logs (Appendix F).

8.2 Laboratory Analytical Results

A summary of laboratory results showing test sample quantities, minimum/maximum analyte concentrations and samples found to exceed the SILs, is presented in **Table 8-2**. More detailed tabulation of results showing the tested concentrations for individual samples alongside the adopted soil criteria are presented in **Tables T1** at the end of this report.

No. of primary samples	Analyte	Min. Conc. (mg/kg)	Max. Conc. (mg/kg)	Sample locations exceeding investigation levels
Priority Metals	5			
8	Arsenic	5	9	None
8	Cadmium	<0.3	<0.3	None
8	Chromium (Total)	9	12	None
8	Copper	9.6	60	None
8	Lead	10	76	None
8	Nickel	0.9	3.8	None
8	Zinc	10	120	None
8	Mercury	<0.05	0.3	None
TRHs (includi	ng BTEX)			
8	TRH C ₆ -C ₁₀ minus BTEX (F1)	<25	<25	None
8	TRH >C ₁₀ -C ₁₆ (F2) minus Naphthalene	<25	<25	None
8	TRH >C ₁₆ -C ₃₄ (F3)	<90	<90	None
8	TRH >C ₃₄ -C ₄₀ (F4)	<120	<120	None
8	Benzene	<0.1	<0.1	None
8	Toluene	<0.1	<0.1	None
8	Ethylbenzene	<0.1	<0.1	None
8	Total Xylenes	<0.3	<0.3	None
PAHs				
8	Benzo(a)pyrene	<0.1	<0.1	None
8	Carcinogenic PAHs	<0.3	<0.3	None
8	Naphthalene	<0.1	<0.1	None
8	Total PAHs	<0.8	<0.8	None
OCPs				
6	OCPs	<1	1	None
OPPs				
6	OPPs	<1.7	<1.7	None
PCBs				
6	PCBs	<1	<1	None
Asbestos (pre	sence/absence)			
6	Asbestos	ND	Detected	BH106_0.1-0.2

Table 8-2 Summary of Soil Analytical Results

With reference to **Table T1**, all tested soil results were below the corresponding health based SILs for residential sites with minimal opportunities for soil access use, with the exception of asbestos detected in shallow fill at BH106.

9. Site Characterisation

9.1 Review of Conceptual Site Model

On the basis of investigation findings, the CSM discussed in **Section 4** was considered to appropriately identify contamination sources, migration mechanisms and exposure pathways, as well as potential onsite and offsite receptors. Data gaps outlined in **Section 4.5** have largely been addressed.

9.2 Soil Impacts

Contaminant concentrations in soils were found to be below the adopted human health-based criteria for residential land use settings (with minimal soil access), with the exception of non-respirable asbestos identified in shallow fill at BH106. Asbestos fragments were identified across the site surface and the asbestos identified in shallow fill at BH106 was likely resultant of asbestos fragments getting tracked over by machinery during demolition or former structures.

As asbestos fragments were identified across the surface of the site and the thin nature of fill soils identified (max. thickness 0.3m), it is recommended that site wide fill soils (including those in setback areas) are excavated and removed from the site. Following all fill removal it is recommended that the underlying natural soils surface is inspected and surface validation samples are collected to confirm the effective removal of all asbestos containing material.

10. Conclusions

The property located at 41-43 Forbes Street, Liverpool NSW was the subject of a Detailed Site Investigation, which was conducted in order to assess the nature and degree of on-site contamination associated with current and former site uses of the land. Based on the findings of this DSI it was concluded that:

- The site had mainly been used for residential purposes since 1950s.
- During the site inspection on the 27 June 2019 all former structures had been demolished and the site was vacant land. Asbestos fragments were observed across the site surface and were likely sourced from former building structures.
- The sub-surface layers observed at six test borehole locations across of the site during this investigation comprised of fill materials (max. thickness 0.3m), overlying residual clays and silt.
- Laboratory results for soil samples collected reported concentrations below the adopted SILs, with the exception of asbestos in fill sample BH106_0.1-0.2.

Based on the findings of this DSI and with consideration of the Statement of Limitations (**Section 12**), El concluded that surficial asbestos contamination was identified. The site can be made suitable for the proposed development, subject to implementing the recommendations specified in **Section 11**.

11. Recommendations

In view of the findings of this investigation and in accordance with the NEPC (2013) guidelines, it is considered that the site can be made suitable for the proposed mixed commercial and residential development on completion of the following recommendations:

- Asbestos Containing Material (ACM) was found across the surface of the site and in shallow fill at BH106. In light of this finding and the thin nature of fill soils identified (max. thickness 0.3m), site wide fill should be classified in accordance with the NSW EPA (2014) Waste Classification Guidelines, excavated and disposed of to an appropriately licensed landfill. Prior to removal preparation of an Asbestos Removal Management Plan must be prepared by the environmental consultant and followed by the excavation contractor to ensure all asbestos impacted fill soils are safely removed from the site and appropriately management;
- Following offsite disposal of site wide fill, a site walkover inspection and subsequent surface validation is required to validate the site is free of fill material and natural clay exposed;
- Preparation of an asbestos clearance report by a suitably qualified environmental consultant, certifying that all asbestos impacted fill soils have been removed from the site.
- Any soil materials being removed from site (including virgin excavated natural materials or VENM) be classified for off-site disposal in accordance the EPA (2014) Waste Classification Guidelines;
- Any material being imported to the site should be assessed for potential contamination, in accordance with NSW EPA guidelines, as being suitable for the intended use or be classified as virgin excavated natural material (VENM); and
- Should unexpected finds (contamination) be encountered during redevelopment works a qualified environmental consultant be engaged to inspect the finds and offer the appropriate guidance.

12. Statement of Limitations

The findings presented in this report are the result of discrete and specific sampling methodologies used in accordance with best industry practices and standards. Due to the site-specific nature of soil sampling from point locations, it is considered likely that all variations in subsurface conditions across a site cannot be fully defined, no matter how comprehensive the field investigation program.

While normal assessments of data reliability have been made, EI assumes no responsibility or liability for errors in any data obtained from previous assessments conducted on site, regulatory agencies (e.g. Council, EPA), statements from sources outside of EI, or developments resulting from situations outside the scope of works of this project.

Despite all reasonable care and diligence, the ground conditions encountered and concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. In addition, site characteristics may change at any time in response to variations in natural conditions, chemical reactions and other events, e.g. groundwater movement and or spillages of contaminating substances. These changes may occur subsequent to El's investigations and assessment.

EI's assessment is necessarily based upon the result of the site investigation and the restricted program of surface and subsurface sampling, screening and chemical testing which was set out in the proposal. Neither EI, nor any other reputable consultant, can provide unqualified warranties nor does EI assume any liability for site conditions not observed or accessible during the time of the investigations.

This report was prepared for the above named client and no responsibility is accepted for use of any part of this report in any other context or for any other purpose or by other third parties. This report does not purport to provide legal advice.

This report and associated documents remain the property of EI subject to payment of all fees due for this assessment. The report shall not be reproduced except in full and with prior written permission by EI.

REFERENCES

Ahern C R, Stone, Y, and Blunden B (1998) *Acid Sulfate Soils Assessment Guidelines*, part of the ASS Manual, Acid Sulfate Soil Management Advisory Committee (ASSMAC), Wollongbar, NSW, Australia, 28 August 1998, 59 p.

Chapman, G.A. and Murphy, C.L. (1989) Soil Landscapes Series Sheet 9030 of Penrith 1:100 000 sheet, Soil Conservation Service of NSW, Sydney, September 1989.

DMR (1991) Penrith 1:100,000 Geological Series Sheet 9030 (Edition 1) *Geological Survey of New South Wales*, Department of Mineral Resources.

EPA (1995) Sampling Design Guidelines Environment Protection Authority of New South Wales, Contaminated Sites Unit, EPA 95/59, September 1995.

EPA (2014) Waste Classification Guidelines – Part 1: Classifying waste, Environment Protection Authority of New South Wales, Doc. EPA 2014/0796, November 2014.

EPA (2017) Guidelines for the NSW Site Auditor Scheme (3rd Edition), NSW EPA, Doc. EPA 2017P0269, October 2017.

NEPM (2013) Schedule B1 Guideline on Investigation Levels for Soil and Groundwater, Schedule B2 Guideline on Site Characterisation and Schedule B4 Guideline on site-specific health risk assessments, National Environmental Protection (Assessment of Site Contamination) Measure 1999, National Environmental Protection Council, December 1999, Amendment 2013.

OEH (2011) *Guidelines for Consultants Reporting on Contaminated Sites*, NSW Office of Environment and Heritage (OEH), OEH 2011/0650, 23 p

USEPA (2006) Data Quality Assessment: A Reviewers Guide – EPA QA/G-9R. USEPA Office of Environmental Information, EPA/240/B-06/002, February 2006.

WADOH (2009) Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia. Published by the Western Australian Department of Health, May 2009.

WHO (1996) Guidelines for Drinking Water Quality, World Health Organisation, 1996.

Abbreviations

ACM	Asbestos-containing materials
ASS	Acid sulfate soils
AST	Above-Ground Storage Tank
ANZECC	Australian and New Zealand Environment Conservation Council
ARMCANZ	Agriculture and Resource Management Council of Australia and New Zealand
B(a)P	Benzo(a)Pyrene (a PAH compound), - B(a)P TEQ Toxicity Equivalent Quotient
BH	Borehole
BTEX	Benzene, Toluene, Ethylbenzene, Xylene
COC	Chain of Custody
DA	Development Application
DP	Deposited Plan
EPA	Environment Protection Authority NSW
F1	TRH $C_6 - C_{10}$ less the sum of BTEX concentrations (Ref. NEPM 2013, Schedule B1)
F2	TRH > $C_{10} - C_{16}$ less the concentration of naphthalene (Ref. NEPM 2013, Schedule B1)
HIL	Health-based Investigation Level
HSL	Health-based Screening Level
km	Kilometres
EIL	Ecological Investigation Level
ESL	Ecological Screening Level
m	Metres
m AHD	Metres Australian Height Datum
m BGL	Metres Below Ground Level
mg/m ³	Milligrams per cubic metre
mV	Millivolts
NATA	National Association of Testing Authorities, Australia
NEPC	National Environmental Protection Council
NSW	New South Wales
OEH	Office of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)
PAHs	Polycyclic Aromatic Hydrocarbons
рН	Measure of the acidity or basicity of an aqueous solution
PQL	Practical Quantitation Limit (limit of detection for respective laboratory instruments)
QA/QC	Quality Assurance / Quality Control
RAP	Remediation Action Plan
SRA	Sample receipt advice (document confirming laboratory receipt of samples)
TCLP	Toxicity Characteristics Leaching Procedure
TPH	Total Petroleum Hydrocarbons (superseded term equivalent to TRH)
TRH	Total Recoverable Hydrocarbons (non-specific analysis of organic compounds)
UCL	Upper Confidence Limit of the mean
USEPA	United States Environmental Protection Agency
UPSS	Underground Petroleum Storage System
UST	Underground Storage Tank
VOCs	Volatile Organic Compounds (specific organic compounds which are volatile)

Appendix A - Figures

LEGEND

 \bigcirc

Approximate site boundary

Approximate borehole location

Approximate proposed deep soil area

Drawn:	L.Y.	l
Approved:	E.W.	41-
Date:	04-07-19	

Uno Constructions Pty Ltd Detailed Site Investigation -43 Forbes Street, Liverpool NSW Sampling Location Plan Figure:

2

Project: E24270.E02_Rev0
Appendix B - Proposed Development Plans

			Rev Description	Drawn	Date	ALL LEVELS TO ALISTRALIAN REIGHT DATIM	Proje	ect	Job No.	1803	Dwg No.	Rev.
Ten	Level 1, 268A Devonshire Stree	et T + 61 2 9211 2700	A DA Submission	VA/CJ	18/06/22	ALL LEVELS TO ROST RELATION DATON.		11 12 Earbas Street			-	
FOX	Surry Hills	F + 61 2 9211 2785	B DAAdditional information	VA / CJ	18/07/09	IT IS THE CONTRACTORS RESPONSIBILITY TO CONFIRM ALL MEASUREMENTS ON SITE	-	41-45 Forbes Street	Scale	1:150 @ A3	A 4	100
John from	NSW 2010 AUSTRALIA	ABN - 63111324353	C For DA changes as clouded	PL / CJ	19/03/26	WRITTEN DIMENSIONS ONLY SHOULD BE TAKEN FROM DRAWINGS. ALL DIMENSIONING	GTHE				A-1	
ΙΟΠΙΣΙΟΠ	foxiohnston com au	contact@foxiobnston.com.au				IS TO SUBSTRATE BRICKWORK / BLOCKWORK UNLESS OTHERWISE NOTED.	The		Date	18/07/09		
-	loxjonnston.com.au	contact@ioxjonnston.com.au				DESIGN AND DRAWINGS REMAIN COPYRIGHT OF FOX JOHNSTON		Basement 1	DrawniChecked	VALCI	-00	1
									Diawirolieuweu	447.03		-

			Rev Description	Drawn	Date	ALL LEVELS TO ALISTRALIAN REIGHT DATIM	Projec	ct	Job No.	1803	Dwg No.	Rev.
Ten	Level 1, 268A Devonshire Street	t T + 61 2 9211 2700	A DA Submission	VA / CJ	18/06/22	ALL LEVELS TO ROSTINEIRIN HEIGHT DATOM.		11 12 Earbas Street			-	
FOX	Surry Hills	F + 61 2 9211 2785	B DAAdditional information	VA / CJ	18/07/09	IT IS THE CONTRACTORS RESPONSIBILITY TO CONFIRM ALL MEASUREMENTS ON SITE	-	41-45 Forbes Street	Scale	1:150 @ A3	A 4	100
Johnston	NSW 2010 AUSTRALIA	ABN - 63111324353	C For DA changes as clouded	PL / CJ	19/03/26	WRITTEN DIMENSIONS ONLY SHOULD BE TAKEN FROM DRAWINGS. ALL DIMENSIONING	GTitle			10.02.00	A-1	
ΙΟΙΠΙΣΙΟΠ	foxiohnston com au	contact@foxiohnston.com.au				IS TO SUBSTRATE BRICKWORK / BLOCKWORK UNLESS OTHERWISE NOTED.	Title		Date	18/07/09		~
-	loxjoiniotoiniooni.au	oonaad @ioxjonnoton.com.aa				DESIGN AND DRAWINGS REMAIN COPYRIGHT OF FOX JOHNSTON		Basement 2	DrawniChecked	VA/CI	-000	0
									Diamitoricaled	10.00		-

								Ľ	all room dimension are i	in weter
			Rev Description	Drawn Date	ALL LEVELS TO AUSTRALIAN HEIGHT DATUM	Project	Job No.	1803	Dwg No. R	Rev.
	Level 1, 268A Devonshire Stre	et T + 61292112700	A DA Submission	VA / CJ 18/06/22		Ad 42 Faultas Chuash	L			
FOX	Surry Hills	F + 61292112785	B DAAdditional information	VA / CJ 18/07/09	IT IS THE CONTRACTORS RESPONSIBILITY TO CONFIRM ALL MEASUREMENTS ON SITE PRIOR TO COMMENCEMENT OF WORK, DRAWINGS SHOULD NOT BE SCALED	41-45 Fordes Street	Scale	1:150 @ A3	A 110	п
la handhan	NSW 2010 AUSTRALIA	ABN - 63111324353	C For DA changes as clouded	PL / CJ 19/03/26	WRITTEN DIMENSIONS ONLY SHOULD BE TAKEN FROM DRAWINGS. ALL DIMENSIONING				A-IIV	U
onnston	foxiobnston com au	contact@foxiobnston.com.au	D For DA changes as clouded	SR / CJ 29/04/29	IS TO SUBSTRATE BRICKWORK / BLOCKWORK UNLESS OTHERWISE NOTED.	Inte	Date	29/04/2019		
• • • • • • • • • • • • • • • • • • •	Toxyormotormedinida	contact@roxjorniotorncontad			DESIGN AND DRAWINGS REMAIN COPYRIGHT OF FOX JOHNSTON	Ground Level	DrawniChecked	SB/CI	-002	
							Diamironoonoo	36/63		

(W-B)							45.884						E-B
*_ . *	6,101	A 4,456	B	6,800		°	D	6,800		6,800	F 4,460	G H	2.417
3,100						Eldlarkulling	Lobby 09						
3,100							Lobby 08			. 4			
3,100				, 7			Lobby 07		XX				
3,100					XX		Lobby 06		XX				
3,100					XX		Lobby 05		ЖЖ				
3,100					XX		Lobby 04		XX				
3,100	~				XX		Lobby 03		XX				
3100)					XX		Lobby 02		XX				Forbes Street
3,100							Lobby 01		XX				1
3,650				Parking for	Commercial uite			Commercial	Lobby				
3,000							Basement 01						
3,000							Basement 02						

Section AA

Fox Johnston

Level 1, 268A Devonshire Street **T** + 61 2 9211 2700 Surry Hills NSW 2010 AUSTRALIA foxjohnston.com.au

F + 61 2 9211 2785 ABN - 63111324353 contact@foxjohnston.com.au

Client **Clempton Holdings Pty Ltd** RevDescriptionADA Sudmission

 Drawn
 Date

 VA / CJ
 18/06/22

	Height Limit							
	(N-B)						(S-	B
	*	(1)	(2)	25,600	3)	(4)		e
	<u>6,310</u>	2,012		8,000	3,600	5,677		<u> </u>
rim 1000000000000000000000000000000000000			Commu	inal Garden				
			Bedroom	Bath Study	LB 08		.	
00 			Bedroom	Bath. Study	LB 07			
000 000 000			Bedroom	Bath. Study	LB 06			
30 100 100			Bedroom	Bath. Study	LB 05			
400 0000000000000000000000000000000000			Bedroom	Bath. Study	LB 04			
DP 37806 RESIDENTIAI			Bedroom	Bath. Study	LB 3			DP 1097121 CENTRAL DISTRICT AMBULANCE (UNUSED)
33			Bedroom	Bath. Study	LB 02			
	the second secon		Bedroom	Bath. Study	LB 01			
3650	- Murenes		Park	ing Area				
000 60 60 60 60			Base	ement 01				
0000 20000			Base	ement 02				

Section BB

	ALL LEVELS TO AUSTRALIAN HEIGHT DATUM.	Project	Job No.	1803	Dwg No.	Rev.
_	IT IS THE CONTRACTORS RESPONSIBILITY TO CONFIRM ALL MEASUREMENTS ON SITE PRIOR TO COMMENCEMENT OF WORK. DRAWINGS SHOULD NOT BE SCALED.	41-43 Forbes Street	Scale	1:200 @ A2	A-210-	A
-	WRITTEN DIMENSIONS ONLY SHOULD BE TAKEN FROM DRAWINGS. ALL DIMENSIONING IS TO SUBSTRATE BRICKWORK / BLOCKWORK UNLESS OTHERWISE NOTED.		Date	18/06/22	001	
-	DESIGN AND DRAWINGS REMAIN COPYRIGHT OF FOX JOHNSTON	Sections	Drawn/Checked	VA / CJ	001	

Appendix C - Summary Table

Table T1 - Summary of Soil Analytical Results

Sample ID					Heavy	Metals					PA	lHs			BT	ΈX			TF	RH		Pesti	cides	PCBs	Asbestos
Sample ID	Sampling Date	As	Cd	Cr*	Cu	Pb	Hg	Ni	Zn	Carcinogenic PAHs (as Β(α)Ρ ΤΕQ)	Benzo(ɑ)pyrene	Total PAHs	Naphthalene	Benzene	Toluene	Ethylbenzene	Total Xylenes	F1	F2	F3	F4	OCPs	OPPs	Total PCB	Presence / Absence
BH101_0.1-0.2		6	<0.3	11	19	59	0.24	3.6	69	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	1	<1.7	<1	No
BH101_0.3-0.4		5	<0.3	11	11	32	0.15	2.8	12	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	NA	NA	NA	NA
BH102_0.1-0.2 BH103_0.1-0.2 BH104.0.1-0.2		5	<0.3	9	12	43	0.13	2.7	32	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH103_0.1-0.2	27/06/2019	5	<0.3	11	60	76	0.22	3.8	120	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH104.0.1-0.2		6	<0.3	11	11	57	0.3	3.2	18	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH105_0-0.1		5	<0.3	12	15	43	0.26	2.4	30	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH105_0-0.1 BH105_0.2-0.3		6	<0.3	11	9.6	10	<0.05	0.9	10	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	NA	NA	NA	NA
BH106_0.1-0.2		7	<0.3	11	18	32	0.26	2.5	22	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	Yes
	•		•	•	•	•					Statistic Summ	ary					•								
Max	ximium	7	<0.3	12	60	76	0.3	3.8	120	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	1	<1.7	<1	Yes
											SILs														
HIL B - J	Residential	500	150	500 Cr(VI)	30,000	1,200	120	1,200	60,000	4		400										600		1	
						Source of	depths (0 m to <1 r	m. BGL)					NL	4	NL	NL	NL	310	NL						
HSL D - Indus	strial/commercial					Source of	depths (1 m to <2 r	m. BGL)					NL	6	NL	NL	NL	480	NL						
C	Clay ¹					Source of	depths (2 m to <4 r	m. BGL)					NL	9	NL	NL	NL	NL	NL						
						Sour	rce depths (4 m + B	GL)					NL	20	NL	NL	NL	NL	NL						
EILs / ESLs - Urban Residen	ntial and Public Open Space ^{1 2}	100		408	150	1,100		245	495		0.7		170	65	105	125	45	180	120	1300	5600	180			
Managen Commerc	nent Limits – <i>sial/Industrial</i> ¹																	800	1000	3500	10000				
Asbestos contamination HSI Bonded A	L – D (Commercial / Industrial) ACM (%w/w)																								Presence / Absence

Notes:

All results are recorded in mg/kg except TCLP with $\mu\text{g/L}$

Highlighted values indicates concentration exceeds Human Health Based Soil Criteria (HIL B / HSL D) Highlighted indicates NEPM 2013 criteria exceeded

HIL B	NEPC 1999 Amendment 2013 'HIL B' - Health based Residential with minimal garden/accessible soil, also includes dwellings with fully and permanenetly paved yard space such as high-rise buildings and apartments.
HSL D	NEPC 1999 Amendment 2013 'HSL D' Health Based Screening Levels applicable for vapour intrusion values applicable for commercial / industrial settings.
#	Thresholds are for Chromium VI.
NR	No current published criterion.
NL	Not Limiting' If the derived soil vapour limit exceeds the soil concentration at which the pore water phase cannot dissolve any more of the individual chemical
ND	'Not detected' i.e. all concentrations of the compounds within the analyte group were found to be below the laboratory limits of detection.
NA	'Not Analysed' i.e. the sample was not analysed.
1	Fine Grained soil values were applied, being the most conservative of the material types.
2	EIL criteria is derived from a site specific Added Contaminant Limit (ACL) with the Ambient Background Concentration (ABC) for an old NSW and low traffic suburb. In lack of physiochemical properties for soils across the site, a site specific ACL criteria for heavy metals based on averaged physiochemical properties presented in Chapman and Murphy (1989) for the Blacktown (bt) soil landscape.
F1	To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.
F2	To obtain F2 subtract naphthalene from the >C10-C16 fraction.
F3	(>C16-C34)
F4	(>C34-C40)

Appendix D - Site Photography

Photo 1: Site condition, looking south-west

Photo 2: Site condition, looking west

Photo 3: Site condition, looking east

Photo 4: Asbestos fragments observed on the surface of the site

Photo 5: Natural silty clay encountered in test bores

Photo 6: General look of site fill and natural clayey silt encountered in test bores

Appendix E - Groundwater Bore Search

Appendix F - Borehole Logs

Project

Location

Position

Job No.

Client

Detailed Site Investigation

Uno Constructions Pty Ltd

Refer to Figure 2

E24270

41-43 Forbes Street, Liverpool NSW

Contractor

Hand Auger

Drill Rig

BOREHOLE: BH101

Sheet 1 OF 1 Date Started 27/6/19 Date Completed 27/6/19 Logged LY Checked EW

									Inclination -90°			Checked EW	_
		Dri	ling		Sampling	-			Field Material Desc	ripti	on I≻		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBO	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE		STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0	0.20	BH101_0.1-0.2 ES		\boxtimes	-	FILL: Silty CLAY; medium plasticity, grey, with rootlets, no	м		FILL	Τ
ΗA	-	GWNE	-	0.70	PID = 0.1 ppm BH101_0.3-0.4 ES PID = 0 ppm		× × \\/ × ×		Clayey Silt; low plasticity, pale brown, with ironstone fragments, no odour.		-	RESIDUAL SOIL	
			- 1			ſ			Hole Terminated at 0.70 m Target Depth Reached. Backfilled with Drilling Spoil.				-
			-										
			-										
			2										-
			-										
			3—										-
			-										
			-										
			4										-
8			-										
			-										
			5—										-
			-										
			-										
5			6										-
			-										
5			-										
			-										
			-										
			-										
h			- 0										
			-										
			-										
			9										
			-										
n 1			- 10										
					This boreho	le lo	g shou	ıld be	e read in conjunction with EI Australia's accompanying sta	andar	d note	es.	

Project

Location

Position

Job No.

Client

Detailed Site Investigation

Uno Constructions Pty Ltd

Refer to Figure 2

E24270

41-43 Forbes Street, Liverpool NSW

Contractor

Drill Rig

Hand Auger

BOREHOLE: BH102

Sheet 1 OF 1 Date Started 27/6/19 Date Completed 27/6/19 Logged LY Checked EW

									Inclination -90°			Checked EW	
		Dri	lling		Sampling				Field Material Desc	riptic	on		_
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
∢		ЯR	0	0.30	BH102_0.1-0.2 ES		\bigotimes	-	FILL: Silty CLAY; medium plasticity, grey, with rootlets, no odour.	м		FILL	Τ
Т	-	о В	-	0.50	PID = 0.2 ppm BH102_04-0.5 ES			СН	Silty CLAY; high plasticity, brown, no odour.	D		RESIDUAL SOIL	+
		GWNE			BH102_0.1-0.2 ES PID = 0.2 ppm BH102_0.4-0.5 ES PID = 0 ppm			CH	FILL: Silty CLAY; medium plasticity, grey, with rootlets, no odour. Silty CLAY; high plasticity, brown, no odour. Hole Terminated at 0.50 m Target Depth Reached. Backfilled with Drilling Spoil.	M		FILL RESIDUAL SOIL	
			8—	-									
Iawiigr			-										
			-	-									
/0 LOG.			-	-									
2423 0			9	-									
KENOLE			-	-									
			-										
- 60			10 —										
					This boreh	ole lo	og sho	uld be	e read in conjunction with EI Australia's accompanying sta	ndaro	d note	es.	

Project

Location

Position

Detailed Site Investigation

Refer to Figure 2

41-43 Forbes Street, Liverpool NSW

BOREHOLE: BH103

Sheet 1 OF 1 Date Started 27/6/19 Date Completed 27/6/19

						Job No.	E24	270 Constr	untin	Contractor			Date Completed 27/6/19
						Client	Uno	Constr	UCTIO	Inclination -90°			Checked EW
F			Dri	lling		Sampling				Field Material Desc	riptic	n	
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
F	A		NE	0	0.30	BH103_0.1-0.2 ES		\otimes	-	FILL: Silty CLAY; medium plasticity, grey, with rootlets, no odour.	м		FILL
	Ï	-	GW	-	0.50	PID = 0.1 ppm BH103 0.4-0.5 ES				Clayey Silt; low plasticity, pale brown, with ironstone fragments, no odour.	D	-	RESIDUAL SOIL
				-	-	PID = 0 ppm	_			Hole Terminated at 0.50 m Target Depth Reached.			
				1 —						Backfilled with Drilling Spoil.			-
				-									
				-									
				2	-								=
				-									
				-									
				-									
				-									
				-	-								
				-									
				4									-
-07-05				-									
1.03 2014				-									
5 Prj: EIA				5—									-
2014-07-0				-									
EIA 1.03				-									
DGD Lib:				6—									-
itu Tool -				-									
b and In S				-									
Datgel La				7-									-
10.0.000				-									
019 10:33				-									
• 04/07/20				8									-
wingFile>:				-	-								
PJ < <dra< th=""><th></th><th></th><th></th><th>-</th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></dra<>				-	-								
70 LOG. C				-									.
E 3 E242				9									-
30 RE HOL				-									
IS AUE				_									
.03.GLB Lc			L	10 —	I	This borel	hole lo	bg shou	uld be	e read in conjunction with El Australia's accompanying star	ndaro	d note	95.
EIA LIB 1.													

Project

Location

Position

Job No.

Detailed Site Investigation

Refer to Figure 2

E24270

41-43 Forbes Street, Liverpool NSW

Contractor

BOREHOLE: BH104

Sheet 1 OF 1 Date Started 27/6/19 Date Completed 27/6/19 Logged LY

					Client	Uno	Consti	uctio	ns Pty Ltd Drill Rig Hand Auger			Logged LY Checked EW	
		Dri	Ilina		Sampling				Field Material Dec	orintic			
METHOD	PENETRATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION		CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
HA	-	GWNE	0	0.30	BH104_0.1-0.2 ES PID = 0.1 ppm BH104_0.4-0.5 ES			- CH	FILL: Silty CLAY; medium plasticity, grey, with rootlets, no odour. Silty CLAY; high plasticity, brown, no odour.	M	-	FILL RESIDUAL SOIL	+
wingFile> 04/07/2019 10:33 10.0 000 Daget Lab and In Stu Tod - DGD Lib: EIA 1.03 2014-07-05 Pi; EIA 1.02 2014-07-05 HA		GWNE			BH104_0.1-0.2 ES PID = 0.1 ppm BH104_0.4-0.5 ES PID = 0 ppm			CH	Yes Y			RESIDUAL SOIL	
S AU BOREHOLE 3 E24270 LOG.GPJ <<			- 9— - -										-
EIA LIB 1.03.GLB Log I] ₁₀ —	<u> </u>	This bore	nole l	og sho	uld be	e read in conjunction with EI Australia's accompanying st	andaro	d note	 es	

Project

Location

Position

Job No.

Client

Detailed Site Investigation

Uno Constructions Pty Ltd

Refer to Figure 2

E24270

41-43 Forbes Street, Liverpool NSW

Contractor

Hand Auger

Drill Rig

BOREHOLE: BH105

Sheet 1 OF 1 Date Started 27/6/19 Date Completed 27/6/19 Logged LY Checked EW

									Inclination -90°			Checked EW		
			Dril	ling		Sampling				Field Material Descr	iptio	n		
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			Щ	0	0.10	BH105_0-0.1 ES	_	¥.	<u> </u>	FILL: Silty CLAY; high plasticity, brown, reworked, no odour.				T
	A H	-	GWN			PID = 0 ppm BH105_0.2-0.3 ES		<u> </u>	СН	Silty CLAY; high plasticity, brown, no odour.	м	-	RESIDUAL SUIL	
				- 1 - - 2		PID = 0 ppm				Hole Terminated at 0.50 m Target Depth Reached. Backfilled with Drilling Spoil.				-
				-										
				-										
				3—										-
				_										
				-										
				4 —										-
6				_										
14-07-0				_										
1.03 20				-										
'n; EIA				5 —										-
-07-05 F				-										
: EIA 1.03 2014				-										
3D Lib				6—										-
Fod - Di				-										
In Situ T				-										
ab and				_										
Datgel L				7—										-
0.000				-										
:33 10				-										.
2019 10				-										
• 04/07/				8										_
rgFile>>				-										
<drawin< th=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></drawin<>				-										
.GPJ <				-										
20 LOG				-										
3 E242				9										
EHOLE				-										
UBOR				-										
og IS A				-										-
EIA LIB 1.03.GLB L		1		10 —	·	This borehol	e lo	g shou	ld be	e read in conjunction with EI Australia's accompanying star	ndaro	d note	25.	

Project

Location

Position

Job No.

Client

Detailed Site Investigation

Uno Constructions Pty Ltd

Refer to Figure 2

E24270

41-43 Forbes Street, Liverpool NSW

Contractor

Hand Auger

Drill Rig

BOREHOLE: BH106

Sheet1 OF 1Date Started27/6/19Date Completed27/6/19LoggedLYChecked EW

									Inclination -90°			Checked EW	
F		Dril	ling		Sampling				Field Material Desc	riptic	n		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
		ш	0-	0.20	BH106_0_1-0.2 ES		\boxtimes	-	FILL: Silty CLAY; high plasticity, brown, reworked, no odour.			FILL	Γ
₽	-	MN	_		PID = 0 ppm		×	СН	Silty CLAY; high plasticity, brown, no odour.	м	-	RESIDUAL SOIL	
		U		0.60	BH106_0.3-0.4 ES								
			-		PID = 0 ppm				Hole Terminated at 0.60 m Target Depth Reached				.
			1 —						Backfilled with Drilling Spoil.				_
			-										
			-										
			-										.
			-										.
			2 —										-
			-										.
			_										
			_										
			3—										-
			-										.
			-										.
			-										
			4										
			4										
3			-										
5			-										.
3			-										
			5 —										-
5			-										.
			-										
5			_										.
2			6 —										-
1			-										.
			-										
2			-										.
2			-										.
6													.
200			-										.
2			-										.
			-										.
			8										-
7			-										'
			_										
j j			-										
			9 —										-
			-										.
			-										•
			_										
			10 —										
10.00					This borehole	e lo	g shou	uld be	e read in conjunction with EI Australia's accompanying sta	ndaro	d note	es.	

EXPLANATION OF NOTES, ABBREVIATIONS & TERMS USED ON BOREHOLE AND TEST PIT LOGS

DRILLING/EXC	AVATIO	N METHOD					
НА На	and Auger		RD	Rotary blade	or drag bit	NQ	Diamond Core - 47 mm
DTC Dia	atube Cor	ing	RT	Rotary Tricon	e bit	NMLC	Diamond Core - 52 mm
NDD No	on-destruc	tive digging	RAB	Rotary Air Bla	ist	HQ	Diamond Core - 63 mm
AS* Au	iger Screv	ving	RC	Reverse Circu	ulation	HMLC	Diamond Core - 63mm
AD* Au	ıger Drillin	Ig	PT	Push Tube		BH	I ractor Mounted Backhoe
*V V-I	Bit		CT	Cable Tool Ri	g	EX	I racked Hydraulic Excavator
*T TC	C-Bit, e.g.	ADT	JET	Jetting	Deller		Existing Excavation
				washbore or	Baller	HAND	
	· ·						
L Low res	sistance	. Rapid penetration/	excavatio	on possible with	little effort fron	n equipment	used.
M Medium	n resista	nce. Penetration/ e	excavatior	n possible at an	acceptable rat	e with moder	ate effort from equipment used.
H High res	sistance	Penetration/ excav	vation is p	ossible but at a	slow rate and	requires sign	ificant effort from equipment used.
R Refusal	/ Practic	al Refusal. No fur	ther prog	ress possible wi	ithout risk of da	amage or una	acceptable wear to equipment used.
These assessment	ts are sub	jective and are depe	endent on	many factors, i	ncluding equip	ment power a	and weight, condition of
excavation or drillin	ng tools ai	nd experience of the	e operator				
WATER							
	$\mathbf{\Sigma}$	Water level at date	e shown		\triangleleft	Partial wat	er loss
	\triangleright	Water inflow				Complete	water loss
GROUNDWATE	R D	Observation of gro or cave-in of the b	oundwate orehole/ t	r, whether prese est pit.	ent or not, was	s not possibl	e due to drilling water, surface seepage
GROUNDWATE	R ERED	Borehole/ test pit strata. Inflow may	was dry s have bee	oon after excav n observed had	ation. Howeve	r, groundwat / test pit beer	er could be present in less permeable n left open for a longer period.
SAMPLING AND		NG					
SPT 4,7,11 N=18 seating 30/80mm RW HW HB		Standard Penetra 4,7,11 = Blows pe Where practical r Penetration occur Penetration occur Hammer double b	ation Test er 150mm efusal occ rred under rred under pouncing o	to AS1289.6.3. ² N = Blo curs, the blows a r the rod weight the hammer ar on anvil	1-2004 ws per 300mm and penetration conly nd rod weight c	penetration n for that inte	following 150mm rval are reported
Sampling							
DS		Disturbed Sample	e .				
BDS		Bulk disturbed Sa	imple				
GS WS		Gas Sample Water Sample					
U63		Thin walled tube	sample - r	number indicate	s nominal sam	nole diameter	in millimetres
Testing			oumpio i				
FP		Field Permeability	/ test over	section noted			
FVS		Field Vane Shear	test expr	essed as uncor	rected shear st	rength (sv =	peak value, sr = residual value)
PID		Photoionisation D	etector re	ading in ppm			
PM		Pressuremeter te	st over se	ction noted			
PP		Pocket Penetrom	eter test e	expressed as in	strument readi	ng in kPa	
WPT		Water Pressure te	ests				
		Static Cone Pe	enetromet	er test			
CPTu		Static Cone Pene	tration tes	st with pore pres	ssure (u) meas	urement	
RANKING OF V	ISUALL	Y OBSERVABLE	CONTA	MINATION A	ND ODOUR	(for specific	soil contamination assessment
R = 0	No visib	le evidence of conta	amination		R = A	No non-nat	ural odours identified
R = 1	Slight ev	vidence of visible co	ontaminati	on	R = B	Slight non-i	natural odours identified
R = 2	Visible of	contamination			R = C	Moderate n	on-natural odours identified
R = 3	Significa	ant visible contamina	ation		R = D	Strong non-	-natural odours identified
ROCK CORE RE	ECOVER	RY					
TCR = Total Co	ore Recov	ery (%)	SCR	= Solid Core Re	ecovery (%)	F	RQD = Rock Quality Designation (%)
= Length of core re	ecevered y	x 100 =	Σ Length	ofcylindrical co	re recevered X	100 =	Σ Axial Lenghts of core>100mm x 100
Lengh of cor	e run			Lengh of core r	un		Lengn of core run
MATERIAL BOU	JNDARIE	ES			· · ·		
= interre	ea pounda	ary -		 = probable b 	boundary		(-, (-, (-, (-, (-, (-, (-, (-, (-, (-,

eiaust Contamination Remediation	ralia			USED O	METH N BORE	OD OF HOLE	SOIL DESCR AND TEST PI	RIPTION T LOGS
	FILL		<u> 後 後 後</u> <u> 秋 秋 秋</u> <u> 秋 秋</u> 秋 <u> 秋 秋</u> 0	RGANIC SC DL, OH or Pt))	 	CLAY (CL, C	CI or CH)
	COUI BOUI	BLES or _DERS	* * * * * * * * * * * * * *	ILT (ML or M	IH)		SAND (SP c	or SW)
	GRAV GW)	/EL (GP or	Combinations sandy clay	s of these basic s	symbols may b	be used to	indicate mixed mater	ials such as
CLASSIFIC Soil is broad 1994 and An	CATION A ly classifien ndt2 – 199	AND INFERRED d and described ir 4), Appendix A. M	STRATIGRAPH Borehole and Test aterial properties are	Y Pit Logs using th e assessed in the	e preferred m e field by visua	ethod give al/tactile me	n in AS1726 – 1993, ethods.	(Amdt1 –
PARTICLE	SIZE CH	ARACTERIST	cs	USCS SY	MBOLS			
Major Divi	ision	Sub Division	Particle Size	Major D	Divisions	Symbol	Descrip	otion
	BOULDE	ERS	>200 mm	s E	o of are	GW	Well graded grav sand mixtures. lit	el and gravel- tle or no fines.
	COBBL	ES	63 to 200 mm	LS 175n	50% ins a	GP	Poorly graded gra	vel and gravel-
		Coarse	20 to 63 mm	0.0 ר	gra 2.mi		Silty gravel, gra	tle or no fines. vel-sand-silt
GRAVE	EL	Medium	6 to 20 mm	than than	arse t	GM	mixtur	es.
		Fine	2 to 6 mm	by c	Mo	GC	Clayey gravel, gra mixtur	avel-sand-clay es.
SANG		Coarse	0.6 to 2 mm	SE GF 50% וי	50% ains m	SW	Well graded sand sand, little or	d and gravelly no fines.
0, 112	·	Fine	0.075 to 0.2mm	AR:	an (se gi	SP	Poorly graded sar sand little or	nd and gravelly
			0.002 to 0.075 m		re th oars	SM	Silty sand, sand	-silt mixtures.
		/	<0.002 to 0.070 mm	th th	of o	SC	Clayey sand, mixtur	sandy-clay es.
	PLAS		RTIES	in than than the second se	ess	ML	Inorganic silts of very fine sands, i	low plasticity, rock flour, silty
L. percent	40	c	H	ED SOII by dry r n is less	aid Limit < 50%	CL	Inorganic clays of plasticity, gravell	low to medium y clays, sandy y clays
ex {Io	20	CL CI .M		5RAIN n 50% 63mr 0.075	Liqu	OL	Organic silts and clays of low	d organic silty plasticity.
QNI			он	than than		MH	Inorganic silts of	high plasticity.
STICITY	10	OL or ML	MH	FII More less	Limit than 50%	ОН	Organic clays of r	nedium to high
PLAS	20	30 40 50	60 70			DT	Peat muck and	other highly
		LIQUID LIMIT (WL),	percent			PI	organic	soils.
MOISTUR								
Symbol	Term Drv	Description Sands and grave	als are free flowing	Clave & Silts ma	v he brittle or	friable and	nowdery	
M	Moist	Soils are darker	than in the dry condi	ition & may feel o	cool. Sands a	nd gravels	tend to cohere.	
W	Wet	Soils exude free	water. Sands and gi	ravels tend to col	here.	0		
Moisture co	ontent of co nan. < less	ohesive soils may than. « much less	also be described in than1.	n relation to plasti	ic limit (WP) o	r liquid limi	t (WL) [» much great	er than,
CONSISTEN		,		DENSITY				
Symbol	Term	Undrained	Shear Strength	Symbol	Term		Density Index %	SPT "N" #
VS	Very So	ft 0. to	12 kPa	VL	Very Loo	se	< 15	0 to 4
5 F	Firm	12 to	50 kPa	MD	Medium De	nsity	<u>35</u> to 65	10 to 30
St	Stiff	50 to	100 kPa	D	Dense		65 to 85	30 to 50
<u>v5</u> t Н	very Sti Hard	Above	e 200 kPa		very Den	se	ADOVE 85	ADOVE 50
In the absen # SPT correl	ce of test r ations are	esults, consistenc not stated in AS1	y and density may b 726 – 1993, and may	be assessed from y be subject to co	correlations v	with the obsorverburder	served behaviour of t	he material. ment type.
MINOR CO	MPONE	NTS	-					
Term	Assessm	nent Guide				Pre	oportion by Mass	
Trace	Presence or no diff	e just detectable b erent to general p	y feel or eye but soil roperties of primary	l properties little component		Coars Fine	e grained soils: ≤ 5% grained soil: ≤15%	•
Some	Presence or no diff	e easily detectable erent to general p	by feel or eye but s roperties of primary	oil properties little component	e	Coarse Fine ç	grained soils: 5 - 12 grained soil: 15 - 30%	%

Appendix G - PID Calibration Sheet

El Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

ABN 33 102 449 507 E service@eiaustralia.com.au W www.eiaustralia.com.au T 02 9516 0722

CALIBRATION CERTIFICATE FOR PHOTO IONISATION DETECTOR

Instrument: Mini RAE 3000

Serial Number: 592-906667 - El PID02 I OR 592-901345 - El PID03 I

Instrument Conditions:

Calibration gas species: Isobutylene.

Calibration gas concentration: <u>[DO ppm</u>]

Gas bottle number: ____2[8055

This PID has been calibrated to Isobutylene gas with the span concentration displayed as

<u><u><u>A</u></u>ppm at <u>100</u>ppm span setting (allowable range +/-10ppm from span setting).</u>

The PID is initially zero calibrated in fresh air.

Remaining gas in bottle: 2250 psi (if reading is <250 psi, notify Equipment Manager to arrange new

gas bottle order)

The above detector was calibrated in accordance with manufacturer's specifications.

Signed: _ Date: 27.6. Time: _ 7-30 Gm

Appendix H - Chain of Custody and Sample Receipt Forms

source: [Untitled].pdf page: 1 SGS Ref: SE194647_COC

						****														ED	AI								
Comments								ysis	Ana		,	,					latrix	ple N	Sam	28p	11965-	2714	2	Sheet of					
HM A Arsenic Dadmium Dhromium Copper Lead								onductivity)	change)	lion					AHs	AHs stos	nt, etc.)		-	upject No: 14275	Pro E2	verpal.	54, L	site: 41-43 Forbes					
Aercury Vickel Zinc HM B Arsenic Cadoburg	HM ^B / PAH		K	Y		S	ering Suite	C (electrical c	EC (cation ex	os Quantifica	os			TRH/BTEX	TRH/BTEX/P	TRH/BTEX/F	i (i.e. Fibro, Pair				treet, 2015 28594 0499	stralia 33 Maddox 9 DRIA NSW 9 94 0400 F: 09	SGS Aus Unit 16, ALEXAN P: 02 859	Laboratory:					
Dhromium Lead Mercury	TCLP I		5	Hold	PFAS	sPOC/	Dewate	pH / E0	pH / CF	Asbest	Asbesl	VOCs	втех	HMA	HM A /	HM A ,	THERS	SOIL	VATER	ng Time	Sampli	Container Type	Laboratory ID	Sample ID					
Nickel Dewatering Suite																X	0	X	>		27/6/19	JAB	1	BH(01_0,1-0.2					
DH & EC FDS / TDU Hardness															X			1			1		2	Bit101-0.3-0.4					
fotal Cyanide Metals (Al, As, Cd, Cr, Cu, Pb, Ho, Ni, Zn)																X							3	B+102_0, to.2					
TRH (F1, F2, F3, F4) BTEX			-	$ \chi $																		/		BH102 0.4-0.5					
PAH Total Phenol																\times							4	BH103_01-02					
LABORATORY TURNAROUND			-	X											X									1342103-24-05					
Standard				<u> </u>												X							5	BI+104-0,1-0,2					
24 Hours			·	X																				BH104_0.4-05					
48 Hours																X							6	BH105_0-0.1					
72 Hours															\times								7	5+105_0.2-0.3					
Other																\times							8	BH106_0,1-0,2					
				X														V			d l	·\		BH106-03-24					
Table	sificatio	e Class	El Wa	with E	leport	R	ince	corda	ed in a res.	ollecte	vere co ng pro	ples v sampli	e sam field s	at thes ard El	est tha stand	r: I atte with	tigato	Inves			a jar	on sealed, glas ss bottle	d rinsed,Tef	Container Type: J= solvent washed, aci S= solvent washed, aci					
			ment	Comr	nler's	Sam			~	(SGS):	ved by	Rece Prir):	ame (El)	ler's Na nt î	Samp Prir			= natural HDPE plastic bottle C= glass vial, Teflon Septum LB = Zip-Lock Bag								
ntal	ironn	ia Env	exand 	S Ale	SG				5	ex :	Alature	Sign			re	7.7	lature	Sign	reet	Miller St	Suite 6.01, 55 Miller								
							2	3.2	10	27	~	Date			110		7	Date	09	NSW 20	PYRMONT NSW 2								
	OC	17 C	46	E19	SE		_	<i>r</i> · 1		inter	Doio	lah			/]	FANT	2//	IMP	au	eiaustralia Ph: 9516 0722 Iab@eiaustralia.com									
	sification	ia Env	El Wa ment Exance Ad: 27	x x with E Comr S Ale E19 ceived	eport oler's SGS SE Rec	R	ance 2	3.3 m.au	ed in ares.	bollectedur (sGS): (SGS): (Planta (SGS): (SG	vere cong provident	ples v sampli Rece Prir Sign Date	e sam field s	at these ard El	est that stand	X X X x x x x x x x x x x x x x x x x x	etigato ler's Na trature 27/ ORT se e-n	Inves Samp Prir Sign Date	reet, 09 au	Miller St NSW 200 5 0722 alia.com.	a jar hite 6.01, 55 PYRMONT Ph: 9510 ab@eiaustro coc March 2018 FOF	on sealed, glas	4 5 6 7 8 d rinsed, Tef id rinsed gla c bottle Septum	$BH103_01-02$ $BH103_04-05$ $BH104_0.4-05$ $BH104_0.4-05$ $BH105_0.2-0.1$ $BH105_0.2-0.3$ $BH105_0.2-$					

Sheet 2 of	2			-	Sam	ple N	latrix								Ana	lysis				******				Comments
Site: As pag	e I	_		Project No: E24270			, etc.)	AHs tos	NHs					ion	change)	inductivity)								HM A Arsenic Cadmium Chromium Copper Lead
Laboratory:	SGS Au Unit 16, ALEXAN P: 02 85	stralia 33 Maddox NDRIA NSW 94 0400 F: 0	Street, 2015 2 8594 0	499			(i.e. Fibro, Paint	TRH/BTEX/P/ P/PCB/Asbes	КН/ВТЕХ/РА	RH/BTEX			S	os Quantificat	C (cation exc	(electrical co	ring Suite	S					HM ^B / PAH	Mercury Nickel Zinc HM ^B Arsenic
Sample ID	Laboratory ID	Container Type	S Date	ampling Time	WATER	SOIL	OTHERS	HM A /	HM≜/T	HM ≜ /T	втех	VOCs	Asbesto	Asbeste	pH / CE	pH / EC	Dewate	sPOCA	PFAS				TCLP H	Chromium Lead Mercury
Q01	201 9 3 27/6/19									×														Dewatering Sulte pH & EC TDS / TDU Hardness Total Cyanide Metals (AI, As. Cd, Cr, Cu, Pb. Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX
																								PAH Total Phenol LABORATORY
																								TURNAROUND
																								Other
Container Type: J= solvent washed, ac S= solvent washed, ac	Container Type: J= solvent washed, acid rinsed, Teflon sealed, glass jar S= solvent washed, acid rinsed glass bottle								est tha stand	at thes ard El	e san I field	iples v sampli	vere c ing pro	ollecte	ed in a res.	iccord	ance	F	Report	with E	l Wast	e Class	sificatio	on Table
P= natural HDPE plast VC= glass vial, Teffon ZLB = Zip-Lock Bag	 solvent washed, acid rinsed, Teflon sealed, glass jar solvent washed, acid rinsed glass bottle natural HDPE plastic bottle /C= glass vial, Teflon Septum /LB = Zip-Lock Bag Suite 6.01, 55 Miller S PYRMONT NSW 20 Ph: 9516 0722 Iab@eiaustralia.com COC March 2018 FORM v.4 - SGS 						iler's Na nt (nature 2, POR se e-r	ame (El)): 16 115 : porato	7 ry res	ults to	Rece Prir Sign Date	ived by nt nature	(scs) lex fo 27/		<u>3:</u> om.a	Ъ> Iu	Sam	npler's	Comr	nents:			

																	· · · · · ·	_			_			
Sheet of					Sam	ple N	latrix		_						Ana	lysis						=		Comments
site: 4(-43 Forber	5 54, (liverpool		Project No: EZ4270			t, etc.)	AHs · · · · · · · · · · · · · · · · · · ·	SHS					tion	change)	onductivity)		•					_	HM A Arsenic Cadmium Chromium Copper Lead
Laboratory:	Envirol 12 Ash CHATS P: 02 9	ab Service: ley Street, WOOD NS 910 6200	s W 2067		-		S (í.e. Fibro, Pain	/TRH/BTEX/P DP/PCB/Asbes	TRH/BTEX/P/	ТКН/ВТЕХ			tos	tos Quantifical	EC (cation exc	C (electrical co	ering Suite	AS					HM ^B / PAH	Mercu ry Nickel Zinc HM <u>B</u> Arsenic Cadmium
Sample ID	Laboratory ID	Container Type	Sa Date	mpling Time	WATER	SOIL	OTHER	.HM ≜ OCP/G	HM A /	HM A	BTEX	VOCs	Asbes	Asbes	pH / C	pH / E	Dewat	sPOC	PFAS				TCLP	Chromium Lead Mercury
		J 	27/6												Lob N Date F Time F Receix Temp: Coolin Securi	eceive eceive eceive to Tree	Envi Chatsw Ph: 2-2 ed: / Ambien Isspact	rolab S 12 As 2003 NS (02) 99 0 (3 7	ervices hley St W 2067 10 6200 S (//G)					Nickel Dewatering Suite pH & EC TDS / TDU Hardness Total Cyanide Metals (AI, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX PAH Total Phenol LABORATORY TURNAROUND Standard 24 Hours 48 Hours 72 Hours
																								Other
Container Type: J= solvent washed, ao S= solvent washed, ao	id rinsed,Te	1	Inve	stigato	or: I atte with	est tha stand	at thes ard E	se san I field	nples v sampl	were o ing pr	ollect ocedu	ed in a ires.		lance	F	Report	with E	l Waste	e Clas	sificati	on Table			
P= natural HDPE plas VC= glass vial, Teflon ZLB = Zip-Lock Bag	VC= glass vial, Teffon Septum ZLB = Zip-Lock Bag Suite 6.01, 55 Miller St PYRMONT NSW 20 Ph: 9516 0722								: e 			Rece Prin Sign Date	ived by nt nature e	(Envir	rolab)	L PZ	<u>ک</u>	Sam	npler's	Comr	ments:			
	trali	a	Ph: \ lab@eia\ COC March 20	9516 0722 Jstralia.com M& FORM v.4 - SGS	.au	IMF Plea	POR ase e-	<u>⊘∕</u> TAN1 mail lat	<u>/ r</u> : porato) ory res	ults to	ı ı: labı	@eia	ustra	alia.c	om.a	7 <u> </u>							

SAMPLE RECEIPT ADVICE

- CLIENT DETAIL	S	LABORATORY DETA	NLS	
Contact	Lan Ye	Manager	Huong Crawford	
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental	
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	61 2 95160722	Telephone	+61 2 8594 0400	
Facsimile		Facsimile	+61285940499	
Email	Lan.ye@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E24270 - 41-43 Forbes St, Liverpool	Samples Received	Thu 27/6/2019	
Order Number	E24270	Report Due	Tue 2/7/2019	
Samples	9	SGS Reference	SE194647	

_ SUBMISSION DETAILS

This is to confirm that 9 samples were received on Thursday 27/6/2019. Results are expected to be ready by COB Tuesday 2/7/2019. Please quote SGS reference SE194647 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested
- Yes SGS Yes 27/6/2019 Yes 20°C Three Days

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 9 Soil COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS

4 soil sample has been placed on hold as no tests have been assigned for it. This sample will not be processed.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia Australia

alia t +61 2 8594 0400 alia f +61 2 8594 0499

www.sgs.com.au

SAMPLE RECEIPT ADVICE

- CLIENT DETAILS -

Client EI AUSTRALIA

Project E24270 - 41-43 Forbes St, Liverpool

SUMMARY	OF ANALYSIS								
No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	BH101_0.1-0.2	29	14	26	11	7	10	12	8
002	BH101_0.3-0.4	-	-	26	-	7	10	12	8
003	BH102_0.1-0.2	29	14	26	11	7	10	12	8
004	BH103_0.1-0.2	29	14	26	11	7	10	12	8
005	BH104.0.1-0.2	29	14	26	11	7	10	12	8
006	BH105_0-0.1	29	14	26	11	7	10	12	8
007	BH105_0.2-0.3	-	-	26	-	7	10	12	8
008	BH106_0.1-0.2	29	14	26	11	7	10	12	8
009	QD1	-	-	-	-	7	10	12	8

SAMPLE RECEIPT ADVICE

- CLIENT DETAILS -

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS

		ibre Identification in soil	Aercury in Soil	Aoisture Content
NO.		2	1	1
	BITOT_0.1-0.2	-	•	•
002	BH101_0.3-0.4	-	1	1
003	BH102_0.1-0.2	2	1	1
004	BH103_0.1-0.2	2	1	1
005	BH104.0.1-0.2	2	1	1
006	BH105_0-0.1	2	1	1
007	BH105_0.2-0.3	-	1	1
008	BH106_0.1-0.2	2	1	1
009	QD1	-	1	1

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Project E24270 - 41-43 Forbes St, Liverpool

Appendix I - Laboratory Analytical Reports

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Lan Ye	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Lan.ye@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E24270 - 41-43 Forbes St, Liverpool	SGS Reference	SE194647 R0
Order Number	E24270	Date Received	27/6/2019
Samples	9	Date Reported	2/7/2019

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Sample # 8: asbestos found as approx 6x3x2mm fibrous mass.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Bennet Lo Senior Organic Chemist/Metals Chemist

S. Ravendr.

Ravee Sivasubramaniam Hygiene Team Leader

> SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Kamrul Ahsan

Senior Chemist

Alexandria NSW 2015 Alexandria NSW 2015

Australia 1 Australia 1

Ly Kim Ha

Organic Section Head

t +61 2 8594 0400 f +61 2 8594 0499

kinty

www.sgs.com.au

ANALYTICAL RESULTS

SE194647 R0

VOC's in Soil [AN433] Tested: 28/6/2019

			BH101_0.1-0.2	BH101_0.3-0.4	BH102_0.1-0.2	BH103_0.1-0.2	BH104.0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			27/6/2019	27/6/2019	27/6/2019	27/6/2019	27/6/2019
PARAMETER	UOM	LOR	SE194647.001	SE194647.002	SE194647.003	SE194647.004	SE194647.005
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH105_0-0.1	BH105_0.2-0.3	BH106_0.1-0.2	QD1
			00"	00"	00"	00"
			SOIL	SOIL	SOIL	SUIL
PARAMETER	UOM	LOR	SE194647.006	SE194647.007	SE194647.008	SE194647.009
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1

SE194647 R0

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 28/6/2019

			BH101_0.1-0.2	BH101_0.3-0.4	BH102_0.1-0.2	BH103_0.1-0.2	BH104.0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE194647.001	SE194647.002	SE194647.003	SE194647.004	SE194647.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH105_0-0.1	BH105_0.2-0.3	BH106_0.1-0.2	QD1
			SOII	SOII	SOII	SOII
			-	-	-	-
PARAMETER	UOM	LOR	SE194647.006	SE194647.007	SE194647.008	SE194647.009
TRH C6-C9	mg/kg	20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 28/6/2019

			BH101_0.1-0.2 BH101_0.3-0.4		BH102_0.1-0.2	BH103_0.1-0.2	BH104.0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
		1.05	27/6/2019	27/6/2019	27/6/2019	27/6/2019	27/6/2019
	UOM	LOR	SE194647.001	SE194647.002	SE194647.003	SE194647.004	SE194647.005
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH105_0-0.1	BH105_0.2-0.3	BH106_0.1-0.2	QD1
PARAMETER	UOM	LOR	SOIL - 27/6/2019 SE194647.006	SOIL - 27/6/2019 SE194647.007	SOIL - 27/6/2019 SE194647.008	SOIL - 27/6/2019 SE194647.009
TRH C10-C14	mg/kg	20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 28/6/2019

			BH101_0.1-0.2	BH101_0.3-0.4	BH102_0.1-0.2	BH103_0.1-0.2	BH104.0.1-0.2
			001	001	001	001	00"
			- SOIL	- SOIL	- SOIL	SOIL	- SUIL
PARAMETER	UOM	LOR	SE194647.001	SE194647.002	SE194647.003	SE194647.004	SE194647.005
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

			BH105_0-0.1	BH105_0.2-0.3	BH106_0.1-0.2
			2011	201	2011
			- SOIL	- SUIL	501L
PARAMETER	UOM	LOR	SE194647.006	SE194647.007	SE194647.008
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8

ANALYTICAL RESULTS

SE194647 R0

OC Pesticides in Soil [AN420] Tested: 28/6/2019

			BH101_0.1-0.2	BH102_0.1-0.2	BH103_0.1-0.2	BH104.0.1-0.2	BH105_0-0.1
			2011	2011	SOII	5011	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	SE194647.001	SE194647.003	SE194647.004	SE194647.005	SE194647.006
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	0.2	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	1.0	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	1	<1	<1	<1	<1

OC Pesticides in Soil [AN420] Tested: 28/6/2019 (continued)

			BH106_0.1-0.2
			SOIL
			-
			27/6/2019
PARAMETER	UOM	LOR	SE194647.008
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1
Lindane	mg/kg	0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1
Aldrin	mg/kg	0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2
Endrin	mg/kg	0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1
Isodrin	mg/kg	0.1	<0.1
Mirex	mg/kg	0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1

OP Pesticides in Soil [AN420] Tested: 28/6/2019

			BH101_0.1-0.2	BH102_0.1-0.2	BH103_0.1-0.2	BH104.0.1-0.2	BH105_0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			27/6/2019	27/6/2019	27/6/2019	27/6/2019	27/6/2019
PARAMETER	UOM	LOR	SE194647.001	SE194647.003	SE194647.004	SE194647.005	SE194647.006
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			BH106_0.1-0.2
PARAMETER	UOM	LOR	SOIL - 27/6/2019 SE194647.008
Dichlorvos	mg/kg	0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2
Malathion	mg/kg	0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2
Methidathion	mg/kg	0.5	<0.5
Ethion	mg/kg	0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7

ANALYTICAL RESULTS

SE194647 R0

PCBs in Soil [AN420] Tested: 28/6/2019

			BH101_0.1-0.2	BH102_0.1-0.2	BH103_0.1-0.2	BH104.0.1-0.2	BH105_0-0.1
			SOIL - 27/6/2010	SOIL - 27/8/2010	SOIL - 27/8/2010	SOIL - 27/8/2010	SOIL - 27/8/2010
PARAMETER	UOM	LOR	SE194647.001	SE194647.003	SE194647.004	SE194647.005	SE194647.006
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			BH106_0.1-0.2
PARAMETER	UOM	LOR	SOIL - 27/6/2019 SE194647.008
Arochlor 1016	mg/kg	0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1

ANALYTICAL RESULTS

SE194647 R0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 28/6/2019

			BH101_0.1-0.2	BH101_0.3-0.4	BH102_0.1-0.2	BH103_0.1-0.2	BH104.0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE194647.001	SE194647.002	SE194647.003	SE194647.004	SE194647.005
Arsenic, As	mg/kg	1	6	5	5	5	6
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	11	11	9.0	11	11
Copper, Cu	mg/kg	0.5	19	11	12	60	11
Lead, Pb	mg/kg	1	59	32	43	76	57
Nickel, Ni	mg/kg	0.5	3.6	2.8	2.7	3.8	3.2
Zinc, Zn	mg/kg	2	69	12	32	120	18

			BH105_0-0.1	BH105_0.2-0.3	BH106_0.1-0.2	QD1
			SOIL	SOIL	SOIL	SOIL
			- 27/6/2019	- 27/6/2019	- 27/6/2019	- 27/6/2019
PARAMETER	UOM	LOR	SE194647.006	SE194647.007	SE194647.008	SE194647.009
Arsenic, As	mg/kg	1	5	6	7	4
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	12	11	11	9.2
Copper, Cu	mg/kg	0.5	15	9.6	18	19
Lead, Pb	mg/kg	1	43	10	32	67
Nickel, Ni	mg/kg	0.5	2.4	0.9	2.5	3.8
Zinc, Zn	mg/kg	2	30	10	22	69

Mercury in Soil [AN312] Tested: 28/6/2019

			BH101_0.1-0.2	BH101_0.3-0.4	BH102_0.1-0.2	BH103_0.1-0.2	BH104.0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE194647.001	SE194647.002	SE194647.003	SE194647.004	SE194647.005
Mercury	mg/kg	0.05	0.24	0.15	0.13	0.22	0.30

			BH105_0-0.1	BH105_0.2-0.3	BH106_0.1-0.2	QD1
			SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE194647.006	SE194647.007	SE194647.008	SE194647.009
Mercury	mg/kg	0.05	0.26	<0.05	0.26	0.23

Moisture Content [AN002] Tested: 28/6/2019

			BH101_0.1-0.2	BH101_0.3-0.4	BH102_0.1-0.2	BH103_0.1-0.2	BH104.0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE194647.001	SE194647.002	SE194647.003	SE194647.004	SE194647.005
% Moisture	%w/w	0.5	12	11	13	16	14

			BH105_0-0.1	BH105_0.2-0.3	BH106_0.1-0.2	QD1
			SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE194647.006	SE194647.007	SE194647.008	SE194647.009
% Moisture	%w/w	0.5	16	20	15	12

Fibre Identification in soil [AN602] Tested: 28/6/2019

			BH101_0.1-0.2	BH102_0.1-0.2	BH103_0.1-0.2	BH104.0.1-0.2	BH105_0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE194647.001	SE194647.003	SE194647.004	SE194647.005	SE194647.006
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH106_0.1-0.2
			SOIL
PARAMETER	UOM	LOR	SE194647.008
Asbestos Detected	No unit	-	Yes
Estimated Fibres*	%w/w	0.01	<0.01

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES

 NATA accreditation does not cover the performance of this service.
 Indicative data, theoretical holding

Indicative data, theoretical holding time exceeded.

Not analysed.
 NVL Not validated.
 IS Insufficient sample for analysis.
 LNR Sample listed, but not received.

UOM LOR ↑↓

Unit of Measure. Limit of Reporting. Raised/lowered Limit of Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au.pv.sgsvr/en-gb/environment</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAI	LABORATORY DETAILS			
Contact Client Address	Lan Ye EI AUSTRALIA SUITE 6.01	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St			
	55 MILLER STREET PYRMONT NSW 2009		Alexandria NSW 2015			
Telephone Facsimile Email	(Not specified) Lan.ye@eiaustralia.com.au	Facsimile Email	+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sgs.com			
Project Order Number Samples	E24270 - 41-43 Forbes St, Liverpool E24270 6	SGS Reference Date Received Date Reported	SE194647 R0 27 Jun 2019 02 Jul 2019			

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Sample # 8: asbestos found as approx 6x3x2mm fibrous mass.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES -

Roi

Bennet Lo Senior Organic Chemist/Metals Chemis

S. Ravender.

Ravee Sivasubramaniam Hygiene Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

V 2015 Australia V 2015 Australia t +61 2 8594 0400 f +61 2 8594 0499

9

www.sgs.com.au

Member of the SGS Group

Kamrul Ahsan Senior Chemist

Kenten C

Ly Kim Ha Organic Section Head

ANALYTICAL REPORT

RESULTS							
Fibre Identification in soil Method AN602							
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	Est.%w/w*	
SE194647.001	BH101_0.1-0.2	Soil	94g Clay,Sand,Soil, Rocks	27 Jun 2019	No Asbestos Found	<0.01	
SE194647.003	BH102_0.1-0.2	Soil	69g Clay,Sand,Soil, Rocks	27 Jun 2019	No Asbestos Found	<0.01	
SE194647.004	BH103_0.1-0.2	Soil	134g Clay,Sand,Soil, Rocks	27 Jun 2019	No Asbestos Found	<0.01	
SE194647.005	BH104.0.1-0.2	Soil	122g Clay,Sand,Soil, Rocks	27 Jun 2019	No Asbestos Found	<0.01	
SE194647.006	BH105_0-0.1	Soil	174g Clay,Rocks	27 Jun 2019	No Asbestos Found	<0.01	
SE194647.008	BH106_0.1-0.2	Soil	153g Clay,Rocks	27 Jun 2019	Chrysotile & Crocidolite Asbestos Found	<0.01	

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY			
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.			
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.			
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."			
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-			
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions. 			

FOOTNOTES -Amosite Brown Asbestos NA Not Analysed White Asbestos Chrvsotile INR --Listed. Not Required Crocidolite Blue Asbestos * -NATA accreditation does not cover the performance of this service . ** Amosite and/or Crocidolite Indicative data, theoretical holding time exceeded. Amphiboles

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au.pv.sgsvr/en-gb/environment</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

CERTIFICATE OF ANALYSIS 220638

Client Details	
Client	El Australia
Attention	Lab Email
Address	Suite 6.01, 55 Miller Street, Pyrmont, NSW, 2009

Sample Details	
Your Reference	E24270, Liverpool
Number of Samples	1 soil
Date samples received	28/06/2019
Date completed instructions received	28/06/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details					
Date results requested by	03/07/2019				
Date of Issue	03/07/2019				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/IEC 17	7025 - Testing. Tests not covered by NATA are denoted with *				

Results Approved By Jaimie Loa-Kum-Cheung, Metals Supervisor Steven Luong, Organics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		220638-1
Your Reference	UNITS	QT1
Date Sampled		27/06/2019
Type of sample		soil
Date extracted	-	01/07/2019
Date analysed	-	03/07/2019
TRH C ₆ - C ₉	mg/kg	<25
TRH C6 - C10	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<3
Surrogate aaa-Trifluorotoluene	%	112

svTRH (C10-C40) in Soil		
Our Reference		220638-1
Your Reference	UNITS	QT1
Date Sampled		27/06/2019
Type of sample		soil
Date extracted	-	01/07/2019
Date analysed	-	01/07/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	91

Acid Extractable metals in soil						
Our Reference		220638-1				
Your Reference	UNITS	QT1				
Date Sampled	te Sampled 27					
Type of sample		soil				
Date prepared	-	01/07/2019				
Date analysed	-	01/07/2019				
Arsenic	mg/kg	8				
Cadmium	mg/kg	<0.4				
Chromium	mg/kg	14				
Copper	mg/kg	21				
Lead	mg/kg	56				
Mercury	mg/kg	0.2				
Nickel	mg/kg	5				
Zinc	mg/kg	74				

Moisture					
Our Reference		220638-1			
Your Reference	rence UNITS QT1				
Date Sampled		27/06/2019			
Type of sample		soil			
Date prepared	-	01/07/2019			
Date analysed	-	02/07/2019			
Moisture	%	13			

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			01/07/2019	[NT]		[NT]	[NT]	01/07/2019	
Date analysed	-			03/07/2019	[NT]		[NT]	[NT]	03/07/2019	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	76	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	76	
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]		[NT]	[NT]	85	
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]		[NT]	[NT]	77	
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	71	
m+p-xylene	mg/kg	2	Org-016	<2	[NT]		[NT]	[NT]	73	
o-Xylene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	72	
naphthalene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	114	[NT]		[NT]	[NT]	98	

QUALITY CONTROL: svTRH (C10-C40) in Soil						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			01/07/2019	[NT]		[NT]	[NT]	01/07/2019	
Date analysed	-			01/07/2019	[NT]		[NT]	[NT]	01/07/2019	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	102	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	102	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	86	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	102	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	102	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	86	
Surrogate o-Terphenyl	%		Org-003	88	[NT]	[NT]	[NT]	[NT]	113	[NT]

QUALITY CONTROL: Acid Extractable metals in soil					Du	plicate		Spike Re	covery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			01/07/2019	[NT]		[NT]	[NT]	01/07/2019	
Date analysed	-			01/07/2019	[NT]		[NT]	[NT]	01/07/2019	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	103	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	102	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	106	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	105	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	108	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	98	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	110	
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	109	

Result Definitions					
NT	Not tested				
NA	Test not required				
INS	Insufficient sample for this test				
PQL	Practical Quantitation Limit				
<	Less than				
>	Greater than				
RPD	Relative Percent Difference				
LCS	Laboratory Control Sample				
NS	Not specified				
NEPM	National Environmental Protection Measure				
NR	Not Reported				

Quality Control	Quality Control Definitions						
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.						
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.						
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.						
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.						
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.						
Australian Drinking	Nator Guidalinas recommand that Thermotolerant Caliform, Easeal Entergenesi, & E Cali Joyals are loss than						

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Appendix J - QA/QC Assessment

J.1 Site location

J.1.1 Introduction

For the purpose of assessing the quality of data presented in this Contaminant Delineation Report, EI collected field QC samples for analysis. The primary laboratory, SGS Australia Pty Ltd (SGS) and secondary laboratory, Envirolab Services Pty Ltd (Envirolab) also prepared and analysed internal QC samples. Details of the field and laboratory QC samples, with the allowable data acceptance ranges are presented in **Table J-1**.

QA/QC Measures	Data Quality Indicators
Precision – A quantitative measure of the variability (or reproducibility) of data	 Data precision would be assessed by reviewing the performance of blind field duplicate sample sets, through calculation of relative percentage differences (RPD). Data precision would be deemed acceptable if RPDs are found to be less than 30%. RPDs that exceed this range may be considered acceptable where: Results are less than 10 times the limits of reporting (LOR); Results are less than 20 times the LOR and the RPD is less than 50%; or Heterogeneous materials or volatile compounds are encountered.
Accuracy – A quantitative	Data accuracy would be assessed through the analysis of:
measure of the closeness of reported data to the "true" value	 Method blanks, which are analysed for the analytes targeted in the primary samples; Matrix spike and matrix spike duplicate sample sets; Laboratory control samples; and Calibration of instruments against known standards
Representativeness – The confidence (expressed qualitatively) that data are representative of each medium present onsite	 To ensure the data produced by the laboratory is representative of conditions encountered in the field, the laboratory would carry out the following: Blank samples will be run in parallel with field samples to confirm there are no unacceptable instances of laboratory artefacts; Review of relative percentage differences (RPD) values for field and laboratory duplicates to provide an indication that the samples are generally homogeneous, with no unacceptable instances of significant sample matrix heterogeneities; and The appropriateness of collection methodologies, handling, storage and preservation techniques will be assessed to ensure/confirm there was minimal opportunity for sample interference or degradation (i.e. volatile loss during transport due to incorrect preservation / transport methods).
Completeness – A measure of the amount of useable data	Analytical data sets acquired during the assessment will be evaluated as complete, upon confirmation that:
from a data collection activity	 Standard operating procedures (SOPs) for sampling protocols were adhered to; and
	 Copies of all COC documentation are presented, reviewed and found to be properly completed.
	It can therefore be considered whether the proportion of "useable data" generated in the data collection activities is sufficient for the purposes of the land use assessment.
Comparability – The	Given that a reported data set can comprise several data sets from
confidence (expressed	separate sampling episodes, issues of comparability between data sets are

QA/QC Measures	Data Quality Indicators
qualitatively) that data may be considered to be equivalent for each sampling and analytical	reduced through adherence to SOPs and regulator-endorsed or published guidelines and standards on each data gathering activity. In addition the data will be collected by experienced samplers and NATA-
event	accredited laboratory methodologies will be employed in all laboratory testing programs.

J.1.2 Calculation of Relative Percentage Difference (RPD)

The RPD values were calculated using the following equation:

$$RPD = \frac{|C_0 - C_R|}{[(C_0 + C_R)/2]} \times 100$$

Where:

 C_{O} = Concentration obtained for the primary sample; and

 C_R = Concentration obtained for the blind replicate or split duplicate sample.

J.2 Field QA/QC Data Evaluation

The field quality assurance/quality control (QA/QC) soil samples collected during the investigations were as follows:

- Blind field duplicates; and
- Inter-laboratory duplicates.

Analytical results for tested soil QA/QC samples, including calculated RPD values between primary and duplicate samples, are presented in **Table J-2**.

J.2.1 Soil Investigation & Soil Validation

J.2.1.1 Blind Field Duplicates

One blind field duplicate (BFD) soil sample was collected as follows:

Sample QD1 was collected from the primary sample BH101_0.1-0.2 on 27 June 2019;

The preparation of the BFD samples involved the collection of a bulk quantity of soil from the same sampling point without mixing, before dividing the material into identical sampling vessels. The duplicate samples were then presented blind to the primary laboratory (SGS) to avoid any potential analytical bias. BFD soil samples were analysed for TRHs, BTEX and selected heavy metals and calculated RPD values were found to be within the Data Acceptance Criteria (**Appendix K, Table Q5**).

J.2.1.2 Inter-Laboratory Duplicate

Sample QT1 was collected as an inter-laboratory duplicate (ILD) of the primary sample BH101_0.1-0.2 on 27 June 2019. The preparation of the ILD sample was identical to the BFD sample, as described above, and was analysed for TRHs, BTEX and selected heavy metals. The calculated RPD values were found to be within the Data Acceptance Criteria (**Appendix K**, **Table Q5**).

J.2.2 Assessment of Field QA/QC Data

All samples were classified in the field with respect to soil/fill characteristics and any observable signs of contamination based on visual and odour assessment, in regards to soil.

All samples, including field QC samples, were transported to the primary and secondary laboratories under strict Chain-of-Custody conditions and appropriate copies of relevant documentation were included in the respective reports.

The overall completeness of documentation produced under the field program of the subject assessment was considered to be adequate for the purposes of drawing valid conclusions regarding the environmental condition of the site.

Based on the results of the field QA/QC data EI considered the field QA/QC programme carried out during the investigation to be appropriate and the results to be acceptable.

J.3 LABORATORY QA/QC

J.3.1 Laboratory Accreditation

To undertake all analytical testing, EI commissioned SGS as the primary laboratory and Envirolab as the secondary laboratory. SGS and Envirolab, both established analytical laboratories which operate in accordance with the guidelines set out in ISO/IEC Guide 25 "General requirements for the competence of calibration and testing laboratories", conducted all respective analyses using National Association Testing Authorities (NATA)-registered procedures.

In relation to contingencies, should the pre-determined DQOs not be achieved, in accordance with each laboratory's QC policy (**Appendix K**), respective tests would be accordingly repeated. Should the results again fall outside the DQOs, then sample heterogeneity may be assumed and written comment will be provided to this effect on the final laboratory certificate. The laboratory QA/QC reports are included in **Appendix K**.

J.3.2 Sample Holding Times

Sample holding times were generally within the laboratory DQOs, which were consistent with standard environmental protocols as tabulated in **Appendix K**, **Tables QC1** and **QC2**.

J.3.3 Test Methods and Practical Quantitation Limits (PQLs)

Practical Quantitation Limits for all tested parameters during the assessment of soils and groundwater are presented in **Appendix K**, **Tables QC3** and **QC4**.

J.3.4 Method Blanks

Concentrations of all parameters in method blanks during the assessment were below the laboratory PQLs and were therefore within the DAC.

J.3.5 Laboratory Duplicate Samples

The Laboratory Control Samples (LCS) for the analysis batches showed calculated RPDs that were within acceptable ranges and conformed to the DAC.

J.3.6 Laboratory Control Samples

The Laboratory Control Samples for the analysis batches were within acceptable ranges and conformed to the DAC.

J.3.7 Matrix Spikes

All matrix spikes for the respective sample batches were within acceptable ranges and conformed to the DAC.

J.3.8 Surrogate

Recovery results for all surrogate samples conformed to the DAC.

J.3.9 Concluding Remark

Based on the laboratory QA/QC results EI considers that the analytical results for the various phases of laboratory testing were valid and useable for interpretation purposes.

Table J-2 Summary of QA/QC results for Investigation samples

u			TRH				BTEX			Heavy Metals										
Sample identificati	Sampled Date	Description	F1*	F2**	F3 (>C ₁₆ - C ₃₄)	F4 (>C ₃₄ - C ₄₀)	Benzene	Toluene	Ethylbenzene	Xylene (total)	m/p-xylene	o-xylene	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc
Intra-laboratory Du	plicate																			
BH101_0.1-0.2	27/6/2019	Fill Material	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.2	<0.1	6	<0.3	11	19	59	0.24	3.6	69
QD1	27/6/2019	Replicate of BH101_0.1-0.2	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.2	<0.1	4	<0.3	9.2	19	67	0.23	3.8	69
	RP	D	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	40.00	0.00	17.82	0.00	12.70	4.26	5.41	0.00
Inter-laboratory Du	plicate																			
BH101_0.1-0.2	27/6/2019	Fill Material	<50	<60	<500	<500	<0.5	< 0.5	<0.5	<1.5	<1	<0.5	6	< 0.3	11	19	59	0.24	3.6	69
QT1	27/6/2019	Replicate of BH101_0.1-0.2	<25	<50	<100	<100	<2	<0.5	<1	<3	<2	<1	8	<0.4	14	21	56	0.2	5	74
	RP	D	NA	NA	NA	NA	NA	0.00	NA	NA	NA	NA	28.57	NA	24.00	10.00	5.22	18.18	32.56	6.99

52.17

Indicates values where a single result is found to be less than detection, with the duplicate sample found to be over the detection limit. 82.35

RPD exceeds 30-50% range referenced from AS4482.1 (2005)

NOTE:

All soil results are reported in mg/kg . All water results are reported in µg/L.

 * - to obtain F1 subtract the sum of BTEX concentrations from the C_6-C_{10} fraction

** - to obtain F2 subtract naphthalene from the > C_{10} - C_{16} fraction

Appendix K - Laboratory QA/AC Policies and

DQOs

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAIL	LS
Contact	Lan Ye	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Lan.ye@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E24270 - 41-43 Forbes St, Liverpool	SGS Reference	SE194647 R0
Order Number	E24270	Date Received	27 Jun 2019
Samples	9	Date Reported	02 Jul 2019

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

SAMPLE SUMMARY

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Fibre Identification in soi

Fibre Identification in soil							Method: N	ME-(AU)-[ENV]AN602
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.1-0.2	SE194647.001	LB177232	27 Jun 2019	27 Jun 2019	26 Jun 2020	28 Jun 2019	26 Jun 2020	01 Jul 2019
BH102_0.1-0.2	SE194647.003	LB177232	27 Jun 2019	27 Jun 2019	26 Jun 2020	28 Jun 2019	26 Jun 2020	01 Jul 2019
BH103_0.1-0.2	SE194647.004	LB177232	27 Jun 2019	27 Jun 2019	26 Jun 2020	28 Jun 2019	26 Jun 2020	01 Jul 2019
BH104.0.1-0.2	SE194647.005	LB177232	27 Jun 2019	27 Jun 2019	26 Jun 2020	28 Jun 2019	26 Jun 2020	01 Jul 2019
BH105_0-0.1	SE194647.006	LB177232	27 Jun 2019	27 Jun 2019	26 Jun 2020	28 Jun 2019	26 Jun 2020	01 Jul 2019
BH106_0.1-0.2	SE194647.008	LB177232	27 Jun 2019	27 Jun 2019	26 Jun 2020	28 Jun 2019	26 Jun 2020	01 Jul 2019

Mercury in Soil Method: ME-(AU)-[ENV]AN312 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH101 0 1-0 2 SE194647 001 I B177271 27 Jun 2019 27 Jun 2019 25 Jul 2019 28 Jun 2019 25 Jul 2019 02 Jul 2019 BH101_0.3-0.4 SE194647.002 LB177271 27 Jun 2019 27 Jun 2019 25 Jul 2019 28 Jun 2019 25 Jul 2019 02 Jul 2019 BH102_0.1-0.2 SE194647.003 25 Jul 2019 25 Jul 2019 LB177271 27 Jun 2019 27 Jun 2019 28 Jun 2019 02 Jul 2019 BH103_0.1-0.2 SE194647.004 LB177271 27 Jun 2019 27 Jun 2019 25 Jul 2019 28 Jun 2019 25 Jul 2019 02 Jul 2019 BH104.0.1-0.2 SE194647.005 LB177271 27 Jun 2019 27 Jun 2019 25 Jul 2019 28 Jun 2019 25 Jul 2019 02 Jul 2019 BH105 0-0.1 SE194647.006 LB177271 27 Jun 2019 27 Jun 2019 25 Jul 2019 28 Jun 2019 25 Jul 2019 02 Jul 2019 BH105_0.2-0.3 SE194647.007 LB177271 27 Jun 2019 27 Jun 2019 25 Jul 2019 25 Jul 2019 02 Jul 2019 28 Jun 2019 BH106 0.1-0.2 SE194647.008 LB177271 27 Jun 2019 27 Jun 2019 25 Jul 2019 25 Jul 2019 02 Jul 2019 28 Jun 2019 OD1 SE194647 009 I B177271 27 Jun 2019 27 Jun 2019 25 Jul 2019 28 Jun 2019 25 Jul 2019 02 Jul 2019

Moisture Content Method: N								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.1-0.2	SE194647.001	LB177278	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	03 Jul 2019	02 Jul 2019
BH101_0.3-0.4	SE194647.002	LB177278	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	03 Jul 2019	02 Jul 2019
BH102_0.1-0.2	SE194647.003	LB177278	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	03 Jul 2019	02 Jul 2019
BH103_0.1-0.2	SE194647.004	LB177278	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	03 Jul 2019	02 Jul 2019
BH104.0.1-0.2	SE194647.005	LB177278	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	03 Jul 2019	02 Jul 2019
BH105_0-0.1	SE194647.006	LB177278	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	03 Jul 2019	02 Jul 2019
BH105_0.2-0.3	SE194647.007	LB177278	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	03 Jul 2019	02 Jul 2019
BH106_0.1-0.2	SE194647.008	LB177278	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	03 Jul 2019	02 Jul 2019
QD1	SE194647.009	LB177278	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	03 Jul 2019	02 Jul 2019

OC Pesticides in Soil

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.1-0.2	SE194647.001	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	02 Jul 2019
BH101_0.3-0.4	SE194647.002	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	02 Jul 2019
BH102_0.1-0.2	SE194647.003	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	02 Jul 2019
BH103_0.1-0.2	SE194647.004	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	02 Jul 2019
BH104.0.1-0.2	SE194647.005	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	02 Jul 2019
BH105_0-0.1	SE194647.006	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	02 Jul 2019
BH105_0.2-0.3	SE194647.007	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	02 Jul 2019
BH106_0.1-0.2	SE194647.008	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	02 Jul 2019
001	SE194647.009	LB177200	27 Jun 2019	27 Jun 2019	11 10 2019	28 Jun 2019	07 Aug 2019	02 101 2019

OP Pesticides in Soil

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
BH101_0.1-0.2	SE194647.001	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019	
BH101_0.3-0.4	SE194647.002	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	02 Jul 2019	
BH102_0.1-0.2	SE194647.003	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019	
BH103_0.1-0.2	SE194647.004	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019	
BH104.0.1-0.2	SE194647.005	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019	
BH105_0-0.1	SE194647.006	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019	
BH105_0.2-0.3	SE194647.007	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	02 Jul 2019	
BH106_0.1-0.2	SE194647.008	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019	
QD1	SE194647.009	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	02 Jul 2019	

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

							incure and in	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.1-0.2	SE194647.001	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
BH101_0.3-0.4	SE194647.002	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
BH102_0.1-0.2	SE194647.003	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
BH103_0.1-0.2	SE194647.004	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
BH104.0.1-0.2	SE194647.005	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019

Method: ME-(AU)-[ENV]AN420

Method: ME-(ALI)-IENV/AN420

Method: ME-(ALI)-JENV/JAN420

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

PAH (Polynuclear Aromatic Hydr	rocarbons) in Soil (co	ntinued)					Method: N	IE-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH105_0-0.1	SE194647.006	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
BH105_0.2-0.3	SE194647.007	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
BH106_0.1-0.2	SE194647.008	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
QD1	SE194647.009	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
PCBs in Soil							Method: M	IE-(AU)-IENVIAN420
Sample Name	Sample No	OC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0_1-0_2	SE194647 001	L B177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	02 Jul 2019
BH101_0.3-0.4	SE194647.002	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	02 Jul 2019
BH102_0.1-0.2	SE194647.003	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	02 Jul 2019
BH103_0_1-0_2	SE194647.004	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	02 Jul 2019
BH104.0.1-0.2	SE194647.005	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	02 Jul 2019
BH105 0-0.1	SE194647.006	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	02 Jul 2019
BH105 0.2-0.3	SE194647.007	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	02 Jul 2019
BH106 0.1-0.2	SE194647.008	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	02 Jul 2019
QD1	SE194647.009	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	02 Jul 2019
Total Recoverable Elements in S	Soil/Monto Solido/Mot	oriola by ICBOES					Method: ME (ALI)	
Total Recoverable Elements in c	Soli/ Waste Solids/Mat	enais by ICPOES					Method. ME-(AO)	-161449/414040//414020
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.1-0.2	SE194647.001	LB177254	27 Jun 2019	27 Jun 2019	24 Dec 2019	28 Jun 2019	24 Dec 2019	02 Jul 2019
BH101_0.3-0.4	SE194647.002	LB177254	27 Jun 2019	27 Jun 2019	24 Dec 2019	28 Jun 2019	24 Dec 2019	02 Jul 2019
BH102_0.1-0.2	SE194647.003	LB177254	27 Jun 2019	27 Jun 2019	24 Dec 2019	28 Jun 2019	24 Dec 2019	02 Jul 2019
BH103_0.1-0.2	SE194647.004	LB177254	27 Jun 2019	27 Jun 2019	24 Dec 2019	28 Jun 2019	24 Dec 2019	02 Jul 2019
BH104.0.1-0.2	SE194647.005	LB177254	27 Jun 2019	27 Jun 2019	24 Dec 2019	28 Jun 2019	24 Dec 2019	02 Jul 2019
BH105_0-0.1	SE194647.000	LD1/7254	27 Jun 2019	27 Jun 2019	24 Dec 2019	28 Jun 2019	24 Dec 2019	02 Jul 2019
BH105_0.2-0.3	SE104647.007	LD177254	27 Jun 2019	27 Jun 2019	24 Dec 2019	20 Jun 2019	24 Dec 2019	02 Jul 2019
DF100_0.1-0.2	SE194647.008	LB177254	27 Jun 2019	27 Jun 2019	24 Dec 2019	28 Jun 2019	24 Dec 2019	02 Jul 2019
	32134047.003	LD177234	27 301 2013	27 301 2013	24 Dec 2013	20 301 20 13	24 Dec 2013	02 301 2013
IRH (Total Recoverable Hydroc	arbons) in Soli						Method: N	IE-(AU)-[ENV]AN403
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.1-0.2	SE194647.001	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
BH101_0.3-0.4	SE194647.002	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
BH102_0.1-0.2	SE194647.003	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
BH103_0.1-0.2	SE194647.004	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
BH104.0.1-0.2	SE194647.005	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
BH105_0-0.1	SE194647.006	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
BH105_0.2-0.3	SE194647.007	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
BH106_0.1-0.2	SE194647.008	LB177290	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
QDT	3E194047.009	LD1//290	27 Juli 2019	27 Juli 2019	11 Jul 2019	20 Juli 2019	07 Aug 2019	01 301 2019
VOC's in Soil							Method: N	IE-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.1-0.2	SE194647.001	LB177289	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
BH101_0.3-0.4	SE194647.002	LB177289	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
BH102_0.1-0.2	SE194647.003	LB177289	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
BH103_0.1-0.2	SE194647.004	LB177289	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
BH104.0.1-0.2	SE194647.005	LB177289	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
BH105_0-0.1	SE194647.006	LB177289	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
BH105_0.2-0.3	SE194647.007	LB177289	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
0.1-0.2	SE194647.008	LB1//289	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
QD1	SE194647.009	LB177289	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
Volatile Petroleum Hydrocarbons	s in Soil						Method: N	IE-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.1-0.2	SE194647.001	LB177289	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
BH101_0.3-0.4	SE194647.002	LB177289	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
BH102_0.1-0.2	SE194647.003	LB177289	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
BH103_0.1-0.2	SE194647.004	LB177289	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
BH104.0.1-0.2	SE194647.005	LB177289	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
BH105_0-0.1	SE194647.006	LB177289	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
BH105_0.2-0.3	SE194647.007	LB1//289	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or **Red** with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Volatile Petroleum Hydrocarbons in Soil (continued) Method: ME-(AU)								ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH106_0.1-0.2	SE194647.008	LB177289	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019
QD1	SE194647.009	LB177289	27 Jun 2019	27 Jun 2019	11 Jul 2019	28 Jun 2019	07 Aug 2019	01 Jul 2019

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC Pesticides in Soil				Method: M	E-(AU)-[ENV]AN42(
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH101_0.1-0.2	SE194647.001	%	60 - 130%	119
	BH102_0.1-0.2	SE194647.003	%	60 - 130%	123
	BH103_0.1-0.2	SE194647.004	%	60 - 130%	123
	BH104.0.1-0.2	SE194647.005	%	60 - 130%	121
	BH105_0-0.1	SE194647.006	%	60 - 130%	123
	BH106_0.1-0.2	SE194647.008	%	60 - 130%	123
OP Pesticides in Soil				Method: M	E-(AU)-[ENV]AN42
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH101_0.1-0.2	SE194647.001	%	60 - 130%	92
	BH102_0.1-0.2	SE194647.003	%	60 - 130%	90
	BH103_0.1-0.2	SE194647.004	%	60 - 130%	90
	BH104.0.1-0.2	SE194647.005	%	60 - 130%	88
	BH105_0-0.1	SE194647.006	%	60 - 130%	90
	BH106_0.1-0.2	SE194647.008	%	60 - 130%	94
d14-p-terphenyl (Surrogate)	BH101_0.1-0.2	SE194647.001	%	60 - 130%	94
	BH102_0.1-0.2	SE194647.003	%	60 - 130%	92
	BH103_0.1-0.2	SE194647.004	%	60 - 130%	92
	BH104.0.1-0.2	SE194647.005	%	60 - 130%	90
	BH105_0-0.1	SE194647.006	%	60 - 130%	92
	BH106_0.1-0.2	SE194647.008	%	60 - 130%	94
PAH (Polynuclear Aromatic Hydrocarbons) in Soil				Method: M	E-(AU)-[ENV]AN42
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH101_0.1-0.2	SE194647.001	%	70 - 130%	92
	BH101_0.3-0.4	SE194647.002	%	70 - 130%	90
	BH102_0.1-0.2	SE194647.003	%	70 - 130%	90
	BH103_0.1-0.2	SE194647.004	%	70 - 130%	90
	BH104.0.1-0.2	SE194647.005	%	70 - 130%	88
	BH105_0-0.1	SE194647.006	%	70 - 130%	90
	BH105_0.2-0.3	SE194647.007	%	70 - 130%	92
	BH106_0.1-0.2	SE194647.008	%	70 - 130%	94
d14-p-terphenyl (Surrogate)	BH101_0.1-0.2	SE194647.001	%	70 - 130%	94
	BH101_0.3-0.4	SE194647.002	%	70 - 130%	94
	BH102_0.1-0.2	SE194647.003	%	70 - 130%	92
	BH103_0.1-0.2	SE194647.004	%	70 - 130%	92
	BH104.0.1-0.2	SE194647.005	%	70 - 130%	90
	BH105_0-0.1	SE194647.006	%	70 - 130%	92
	BH105_0.2-0.3	SE194647.007	%	70 - 130%	92
	BH106_0.1-0.2	SE194647.008	%	70 - 130%	94
d5-nitrobenzene (Surrogate)	BH101_0.1-0.2	SE194647.001	%	70 - 130%	90
	BH101_0.3-0.4	SE194647.002	%	70 - 130%	88
	BH102_0.1-0.2	SE194647.003	%	70 - 130%	84
	BH103_0.1-0.2	SE194647.004	%	70 - 130%	86
	BH104.0.1-0.2	SE194647.005	%	70 - 130%	88
	BH105_0-0.1	SE194647.006	%	70 - 130%	88
	BH105_0.2-0.3	SE194647.007	%	70 - 130%	88
	BH106_0.1-0.2	SE194647.008	%	70 - 130%	86
PCBs in Soil				Method: M	E-(AU)-[ENV]AN42
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH101_0.1-0.2	SE194647.001	%	60 - 130%	119
	BH102_0.1-0.2	SE194647.003	%	60 - 130%	123
	BH103_0.1-0.2	SE194647.004	%	60 - 130%	123
	BH104.0.1-0.2	SE194647.005	%	60 - 130%	121
	BH105_0-0.1	SE194647.006	%	60 - 130%	123
	BH106_0.1-0.2	SE194647.008	%	60 - 130%	123
VOC's in Soil				Method: M	E-(AU)-[ENV]AN43
Parameter	Sample Name	Sample Number	Units	Cri <u>teria</u>	Reco <u>very %</u>
Bromofluorobenzene (Surrogate)	BH101_0.1-0.2	SE194647.001	%	60 - 130%	79
	BH101 0.3-0.4	SE194647.002	%	60 - 130%	79
	 BH102 0.1-0.2	SE194647.003	%	60 - 130%	80

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433 Recovery % Parameter Sample Name Sample Number Units Criteria Bromofluorobenzene (Surrogate) BH103_0.1-0.2 SE194647.004 % 60 - 130% 78 BH104.0.1-0.2 SE194647.005 % 60 - 130% 79 BH105 0-0.1 SE194647.006 % 60 - 130% 79 BH105_0.2-0.3 SE194647.007 % 60 - 130% 73 BH106_0.1-0.2 SE194647.008 % 60 - 130% 83 QD1 SE194647.009 % 60 - 130% 84 d4-1,2-dichloroethane (Surrogate) BH101_0.1-0.2 SE194647.001 % 60 - 130% 92 BH101_0.3-0.4 SE194647.002 60 - 130% 95 % BH102 0.1-0.2 SE194647.003 % 60 - 130% 95 BH103_0.1-0.2 SE194647.004 % 60 - 130% 93 SE194647.005 60 - 130% 94 BH104.0.1-0.2 % BH105 0-0.1 SE194647.006 93 % 60 - 130% BH105 0.2-0.3 SE194647.007 % 60 - 130% 86 SE194647.008 BH106_0.1-0.2 % 60 - 130% 100 QD1 SE194647.009 % 60 - 130% 100 d8-toluene (Surrogate) BH101_0.1-0.2 SE194647.001 % 60 - 130% 84 BH101_0.3-0.4 SE194647.002 % 60 - 130% 86 BH102 0.1-0.2 SE194647.003 % 60 - 130% 86 BH103_0.1-0.2 SE194647.004 % 60 - 130% 83 BH104.0.1-0.2 SE194647.005 60 - 130% 83 % BH105 0-0.1 SE194647.006 % 60 - 130% 85 BH105_0.2-0.3 SE194647.007 % 60 - 130% 76 BH106_0.1-0.2 SE194647.008 % 60 - 130% 90 QD1 SE194647.009 % 60 - 130% 90 Dibromofluoromethane (Surrogate) BH101 0.1-0.2 SE194647 001 % 60 - 130% 88 BH101_0.3-0.4 SE194647.002 60 - 130% 90 % BH102_0.1-0.2 SE194647.003 % 60 - 130% 90 BH103_0.1-0.2 SE194647.004 % 60 - 130% 87 BH104.0.1-0.2 SE194647.005 60 - 130% 87 % BH105 0-0.1 SE194647.006 60 - 130% 87 % BH105 0.2-0.3 SE194647.007 % 60 - 130% 79 BH106_0.1-0.2 SE194647.008 60 - 130% % 92 SE194647.009 QD1 % 60 - 130% 91 Method: ME-(AU)-[ENV]AN433

Volatile Petroleum Hydrocarbons in Soil

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH101_0.1-0.2	SE194647.001	%	60 - 130%	79
	BH101_0.3-0.4	SE194647.002	%	60 - 130%	79
	BH102_0.1-0.2	SE194647.003	%	60 - 130%	80
	BH103_0.1-0.2	SE194647.004	%	60 - 130%	78
	BH104.0.1-0.2	SE194647.005	%	60 - 130%	79
	BH105_0-0.1	SE194647.006	%	60 - 130%	79
	BH105_0.2-0.3	SE194647.007	%	60 - 130%	73
	BH106_0.1-0.2	SE194647.008	%	60 - 130%	83
	QD1	SE194647.009	%	60 - 130%	84
d4-1,2-dichloroethane (Surrogate)	BH101_0.1-0.2	SE194647.001	%	60 - 130%	92
	BH101_0.3-0.4	SE194647.002	%	60 - 130%	95
	BH102_0.1-0.2	SE194647.003	%	60 - 130%	95
	BH103_0.1-0.2	SE194647.004	%	60 - 130%	93
	BH104.0.1-0.2	SE194647.005	%	60 - 130%	94
	BH105_0-0.1	SE194647.006	%	60 - 130%	93
	BH105_0.2-0.3	SE194647.007	%	60 - 130%	86
	BH106_0.1-0.2	SE194647.008	%	60 - 130%	100
	QD1	SE194647.009	%	60 - 130%	100
d8-toluene (Surrogate)	BH101_0.1-0.2	SE194647.001	%	60 - 130%	84
	BH101_0.3-0.4	SE194647.002	%	60 - 130%	86
	BH102_0.1-0.2	SE194647.003	%	60 - 130%	86
	BH103_0.1-0.2	SE194647.004	%	60 - 130%	83
	BH104.0.1-0.2	SE194647.005	%	60 - 130%	83
	BH105_0-0.1	SE194647.006	%	60 - 130%	85
	BH105_0.2-0.3	SE194647.007	%	60 - 130%	76

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued)

Method: ME-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d8-toluene (Surrogate)	BH106_0.1-0.2	SE194647.008	%	60 - 130%	90
	QD1	SE194647.009	%	60 - 130%	90
Dibromofluoromethane (Surrogate)	BH101_0.1-0.2	SE194647.001	%	60 - 130%	88
	BH101_0.3-0.4	SE194647.002	%	60 - 130%	90
	BH102_0.1-0.2	SE194647.003	%	60 - 130%	90
	BH103_0.1-0.2	SE194647.004	%	60 - 130%	87
	BH104.0.1-0.2	SE194647.005	%	60 - 130%	87
	BH105_0-0.1	SE194647.006	%	60 - 130%	87
	BH105_0.2-0.3	SE194647.007	%	60 - 130%	79
	BH106_0.1-0.2	SE194647.008	%	60 - 130%	92
	QD1	SE194647.009	%	60 - 130%	91

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil			N	Nethod: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB177271.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

OC Pesticides in Soil		Metho	od: ME-(AU)-[ENV]AN420	
Sample Number	Parameter	Units	LOR	Result
LB177290.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	114
OP Pesticides in Soil			Metho	od: ME-(AU)-[ENV]AN420
Sample Number	Parameter	Units	LOR	Result
LB177290.001	Dichlorvos	mg/kg	0.5	<0.5
	Dimethoate	mg/kg	0.5	<0.5
	Diazinon (Dimpylate)	mg/kg	0.5	<0.5
	Fenitrothion	mg/kg	0.2	<0.2
	Malathion	mg/kg	0.2	<0.2
	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
	Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
	Bromophos Ethyl	ma/ka	0.2	<0.2

		Ethion	mg/kg	0.2	<0.2
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
5	Surrogates	2-fluorobiphenyl (Surrogate)	%	-	92
		d14-p-terphenyl (Surrogate)	%	-	96
PAH (Polynuclear Aromatic H	PAH (Polynuclear Aromatic Hydrocarbons) in Soil			Metho	od: ME-(AU)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result
LB177290.001		Naphthalene	mg/kg	0.1	<0.1

Methidathion

LB177290.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
-	Fluorene	mg/kg	0.1	<0.1
-	Phenanthrene	mg/kg	0.1	<0.1
-	Anthracene	mg/kg	0.1	<0.1
	Fluoranthene	mg/kg	0.1	<0.1
	Pyrene	mg/kg	0.1	<0.1
	Benzo(a)anthracene	mg/kg	0.1	<0.1
	Chrysene	mg/kg	0.1	<0.1
	Benzo(a)pyrene	mg/kg	0.1	<0.1

mg/kg

0.5

<0.5 <0.2

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN420 LOR Sample Number Paran Units Result LB177290.001 Indeno(1,2,3-cd)pyrene mg/kg 0.1 < 0.1 Dibenzo(ah)anthracene mg/kg 0.1 <0.1 0.1 <0.1 Benzo(ghi)perylene mg/kg Total PAH (18) mg/kg 0.8 <0.8 Surrogates d5-nitrobenzene (Surrogate) 82 % 2-fluorobiphenyl (Surrogate) % 92 d14-p-terphenyl (Surrogate) % -96 PCBs in Soil Method: ME-(AU)-[ENV]AN420 Sample Numb Result Parameter LOR LB177290.001 Arochlor 1016 0.2 <0.2 mg/kg Arochlor 1221 mg/kg 0.2 <0.2 Arochlor 1232 mg/kg 0.2 <0.2 Arochlor 1242 0.2 <0.2 mg/kg Arochlor 1248 mg/kg 0.2 < 0.2 Arochlor 1254 mg/kg 0.2 <0.2 Arochlor 1260 0.2 <0.2 mg/kg Arochlor 1262 mg/kg 0.2 < 0.2 Arochlor 1268 0.2 <0.2 mg/kg Total PCBs (Arochlors) mg/kg <1 1 Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) % 114 Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320 LOR Sample Number Result LB177254.001 Arsenic, As mg/kg 1 <1 Cadmium, Cd mg/kg 0.3 <0.3 Chromium, Cr 0.3 <0.3 mg/kg 0.5 <0.5 Copper, Cu mg/kg Nickel, Ni mg/kg 0.5 <0.5 Lead, Pb <1 mg/kg 1 2 <2.0 Zinc, Zn mg/kg TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 Units Result Sample Number Parameter LOR LB177290.001 TRH C10-C14 20 <20 mg/kg TRH C15-C28 mg/kg 45 <45 TRH C29-C36 mg/kg 45 <45 TRH C37-C40 100 <100 mg/kg TRH C10-C36 Total mg/kg 110 <110 Method: ME-(AU)-[ENV]AN433 VOC's in Soil Sample Numbe Units Result Parameter LOR LB177289.001 Monocyclic Aromatic Benzene mg/kg 0.1 <0.1 Hvdrocarbons Toluene mg/kg 0.1 < 0.1 Ethylbenzene 0.1 <0.1 mg/kg 0.2 <0.2 m/p-xylene mg/kg o-xylene mg/kg 0.1 < 0.1 Polycyclic VOCs Naphthalene 0.1 <0.1 mg/kg Dibromofluoromethane (Surrogate) Surrogates 105 % d4-1,2-dichloroethane (Surrogate) % 97 d8-toluene (Surrogate) % 91 Bromofluorobenzene (Surrogate) % 87 Totals Total BTEX mg/kg 0.6 <0.6 Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433 Sample Number Parameter Units LOR Result LB177289.001 TRH C6-C9 20 <20 mg/kg Surrogates Dibromofluoromethane (Surrogate) % 105 d4-1,2-dichloroethane (Surrogate) % 97 d8-toluene (Surrogate) % 91

Method: ME-(AU)-IENVIAN002

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

	0.0011	 - 6	Sell.
IVI	ercu	 нs	2011

Mercury in Soil Method: ME				od: ME-(AU)-[ENVJAN312			
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE194647.003	LB177271.014	Mercury	mg/kg	0.05	0.13	0.13	68	5
SE194650.003	LB177271.024	Mercury	mg/kg	0.05	<0.05	<0.05	200	0

Moisture Content

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE194647.003	LB177278.011	% Moisture	%w/w	0.5	13	13	38	3
SE194650.003	LB177278.021	% Moisture	%w/w	0.5	<0.5	<0.5	200	0

OC Pesticides in Soil

OC Pesticides in S	oil						Meth	od: ME-(AU)-	[ENV]AN420
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE194647.008	LB177290.024		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	0	200	0
			Alpha BHC	mg/kg	0.1	<0.1	0	200	0
			Lindane	mg/kg	0.1	<0.1	0	200	0
			Heptachlor	mg/kg	0.1	<0.1	0	200	0
			Aldrin	mg/kg	0.1	<0.1	0	200	0
			Beta BHC	mg/kg	0.1	<0.1	0	200	0
			Delta BHC	mg/kg	0.1	<0.1	0	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	0	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	0.008	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	0.014	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	0.011	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Dieldrin	mg/kg	0.2	<0.2	0.05	200	0
			Endrin	mg/kg	0.2	<0.2	0	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	0	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	0	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	0	200	0
			Methoxychlor	mg/kg	0.1	<0.1	0	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	0	200	0
			Isodrin	mg/kg	0.1	<0.1	0	200	0
			Mirex	mg/kg	0.1	<0.1	0	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	0.058	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.19	0.188	30	2
OP Pesticides in S	lic						Meth	od: ME-(AU)-	[ENV]AN420
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE194647.006	LB177290.014	Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
		Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
		Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
		Malathion	mg/kg	0.2	<0.2	<0.2	200	0
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
		Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
		Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
		Ethion	mg/kg	0.2	<0.2	<0.2	200	0
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
		Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	0
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	0
PAH (Polynuclea	ar Aromatic Hydrocarbons) in Soil					Meth	od: ME-(AU)-	[ENV]AN420
Original	Duplicato	Paramotor	Unite					

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear A	Aromatic Hydrocarbo	ns) in Soil (contin	ued)				Meth	od: ME-(AU)-	[ENV]AN42
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE194647.006	LB177290.014		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>0</td></lor=0<>	mg/kg	0.2	<0.2	<0.2	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td>0</td></lor=lor<>	mg/kg	0.3	<0.3	<0.3	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>0</td></lor=lor>	mg/kg	0.2	<0.2	<0.2	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	30	0
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	0
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	0
SE194649.002	LB177290.023		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(b&i)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>0</td></lor=0<>	mg/kg	0.2	<0.2	<0.2	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td>0</td></lor=lor<>	mg/kg	0.3	<0.3	<0.3	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>0</td></lor=lor>	mg/kg	0.2	<0.2	<0.2	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	30	2
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	0
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	2
PCBs in Soil							Meth	od: ME-(AU)-	[ENV]AN42

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE194647.008	LB177290.024	Arochlor 1016	mg/kg	0.2	<0.2	0	200	0
		Arochlor 1221	mg/kg	0.2	<0.2	0	200	0
		Arochlor 1232	mg/kg	0.2	<0.2	0	200	0
		Arochlor 1242	mg/kg	0.2	<0.2	0	200	0
		Arochlor 1248	mg/kg	0.2	<0.2	0	200	0
		Arochlor 1254	mg/kg	0.2	<0.2	0	200	0
		Arochlor 1260	mg/kg	0.2	<0.2	0	200	0
		Arochlor 1262	mg/kg	0.2	<0.2	0	200	0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PCBs in Soil (cont	tinued)						Mett	od: ME-(AU)-	-IFNVIAN42
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE194647.008	LB177290.024		Arochlor 1268	ma/ka	0.2	< 0.2	0	200	0
02101011000	2011/2001021		Total PCBs (Arochlors)	ma/ka	1	<1	0	200	0
		Surrogates	Tetrachloro-m-xvlene (TCMX) (Surrogate)	ma/ka	_	0	0.188	30	2
Total Recoverable	Flements in Soil/Wa	ste Solids/Materiale	a by ICPOES				Method: ME		N040/AN32
Original	Duplicato		Parameter	Unite	LOP	Original	Duplicato	Critoria %	
Original	Duplicate			Office	LOK	onginai	Duplicate		KFD /0
SE194647.003	LB177254.014		Arsenic, As	mg/kg	1	5	-0.0	49	13
			Chamium, Co	mg/kg	0.3	<0.3	<0.3	200	7
				mg/kg	0.5	9.0	9.7	35	
			Copper, Cu	mg/kg	0.5	12	12	34	0
				mg/kg	0.5	2.7	3.1	4/	15
				mg/kg	2	43	43	32	0
SE104650.002	L P177254 024			mg/kg	2	52	-1	190	9
3E194050.003	LB177254.024		Codmium Cd	mg/kg	0.2	<0.2	<0.2	200	0
			Chromium, Cr	mg/kg	0.3	10	17	200	6
				mg/kg	0.3	10	17	33	0
			Nickol Ni	mg/kg	0.5	6.2	5.0	20	15
				mg/kg	0.5	0.3	5.4	39	0
				mg/kg	1	24	<2.0	200	
			Zinc, Zn	mg/kg	2	2.4	<2.0	128	10
TRH (Total Recov	erable Hydrocarbons	i) in Soil					Meth	nod: ME-(AU)	-[ENV]AN40
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE194647.006	LB177290.014		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
SE194649.002	LB177290.023		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	68	130	75	65
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	130	139	19
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	130	119	38
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
VOC's in Soil							Meth	nod: ME-(AU)	-[ENV]AN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE194647.006	LB177289.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xvlene	ma/ka	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	ma/ka	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	ma/ka	_	4.3	4.3	50	1
		2	d4-1,2-dichloroethane (Surrogate)	ma/ka	-	4.7	4.6	50	1
			d8-toluene (Surrogate)	ma/ka	-	4.2	4.2	50	2
			Bromofluorobenzene (Surrogate)	ma/ka	_	3.9	3.9	50	2
		Totals	Total Xvlenes	ma/ka	0.3	<0.3	<0.3	200	
			Total BTEX	ma/ka	0.6	<0.6	<0.6	200	0
SE194649.002	LB177289.023	Monocyclic	Benzene	ma/ka	0.1	<0.1	<0.1	174	0
		Aromatic	Toluene	ma/ka	0.1	0.7	0.7	44	4
			Ethylbenzene	ma/ka	0.1	0.2	0.2	73	4
			m/p-xylene	mg/kg	0.2	0.5	0.5	69	6
L									-

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (con	(finued)						Meth	od: ME-(ALI)-I	FNVIAN433
Original	Dunlicate		Parameter	Unite	LOR	Original	Dunlicate	Critoria %	RPD %
SE194649 002	L B177289 023	Monocyclic	o-xylene	ma/ka	0.1	<0.1	<0.1	184	0
02101010.002	2011/200.020	Polycyclic	Nanhthalene	ma/ka	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	ma/ka	-	4.6	4.6	50	2
			d4-1 2-dichloroethane (Surrogate)	ma/ka	_	5.2	5.3	50	3
			d8-toluene (Surrogate)	ma/ka	_	4.8	4.9	50	1
			Bromofluorobenzene (Surrogate)	ma/ka	-	4.5	4.6	50	3
		Totals	Total Xvlenes	ma/ka	0.3	0.6	0.6	82	7
			Total BTEX	ma/ka	0.6	1.6	1.6	49	5
Malatila Defealarea	Ubular and and in Oall			5.5		-			
volatile Petroleum	Hydrocarbons in Soll						Meth	100: ME-(AU)-[ENVJAN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE194647.006	LB177289.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.3	4.3	30	1
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.7	4.6	30	1
			d8-toluene (Surrogate)	mg/kg	-	4.2	4.2	30	2
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.9	3.9	30	2
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE194649.002	LB177289.023		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.6	4.6	30	2
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.2	5.3	30	3
			d8-toluene (Surrogate)	mg/kg	-	4.8	4.9	30	1
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.5	4.6	30	3
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	174	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil				N	lethod: ME-(A	U)-[ENV]AN312
Sample Number Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB177271.002 Mercury	mg/kg	0.05	0.20	0.2	70 - 130	102

OC Pesticides in Soi	I					N	/lethod: ME-(A	U)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB177290.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	115
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	117
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	115
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	100
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	124
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	112
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.16	0.15	40 - 130	107
OP Pesticides in Soil	l -					N	/lethod: ME-(A	U)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB177290.002		Dichlorvos	mg/kg	0.5	1.7	2	60 - 140	83
		Diazinon (Dimpylate)	mg/kg	0.5	1.7	2	60 - 140	86
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.9	2	60 - 140	93
		Ethion	mg/kg	0.2	1.7	2	60 - 140	85
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	90
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	86
PAH (Polynuclear Ar	omatic Hydrocarbo	ons) in Soll				N	/lethod: ME-(A	U)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB177290.002		Naphthalene	mg/kg	0.1	4.8	4	60 - 140	121
		Acenaphthylene	mg/kg	0.1	4.8	4	60 - 140	119
		Acenaphthene	mg/kg	0.1	4.7	4	60 - 140	117
		Phenanthrene	mg/kg	0.1	5.0	4	60 - 140	124
		Anthracene	mg/kg	0.1	4.8	4	60 - 140	119
		Fluoranthene	mg/kg	0.1	4.8	4	60 - 140	121
		Pyrene	mg/kg	0.1	4.6	4	60 - 140	115
		Benzo(a)pyrene	mg/kg	0.1	4.4	4	60 - 140	111
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	84
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	90
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	86
PCBs in Soil						N	/lethod: ME-(A	U)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB177290.002		Arochlor 1260	mg/kg	0.2	0.3	0.4	60 - 140	83

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Total Recoverable B	Elements in Soil/V	Vaste Solids/Materials by ICPOES				Method:	ME-(AU)-[EN	V]AN040/AN320
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB177254.002		Arsenic, As	mg/kg	1	340	336.32	79 - 120	100
		Cadmium, Cd	mg/kg	0.3	420	416.6	69 - 131	102
		Chromium, Cr	mg/kg	0.3	33	35.2	80 - 120	93
		Copper, Cu	mg/kg	0.5	320	370.46	80 - 120	86
		Nickel, Ni	mg/kg	0.5	170	210.88	79 - 120	80
		Lead, Pb	mg/kg	1	91	107.87	79 - 120	84
		Zinc, Zn	mg/kg	2	280	301.27	80 - 121	92
TRH (Total Recover	rable Hydrocarboi	ns) in Soil				N	lethod: ME-(A	U)-[ENV]AN403
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB177290.002		TRH C10-C14	mg/kg	20	33	40	60 - 140	83
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	78
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	63
	TRH F Bands	TRH >C10-C16	mg/kg	25	32	40	60 - 140	80
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	70
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	70

Sample Number

2/7/2019

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (cor	ntinued)					N	lethod: ME-(A	U)-[ENV]AN433
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB177289.002	Monocyclic	Benzene	mg/kg	0.1	1.8	2.9	60 - 140	63
	Aromatic	Toluene	mg/kg	0.1	2.2	2.9	60 - 140	75
		Ethylbenzene	mg/kg	0.1	2.2	2.9	60 - 140	75
		m/p-xylene	mg/kg	0.2	4.5	5.8	60 - 140	77
		o-xylene	mg/kg	0.1	2.2	2.9	60 - 140	77
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.9	5	60 - 140	99
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.7	5	60 - 140	95
		d8-toluene (Surrogate)	mg/kg	-	4.9	5	60 - 140	98
		Bromofluorobenzene (Surrogate)	mg/kg	-	5.0	5	60 - 140	100
Volatile Petroleum	Hydrocarbons in §	Soil				N	lethod: ME-(A	U)-[ENV]AN433
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB177289.002		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	93
		TRH C6-C9	mg/kg	20	23	23.2	60 - 140	99
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.9	5	60 - 140	99
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.7	5	60 - 140	95
		d8-toluene (Surrogate)	mg/kg	-	4.9	5	60 - 140	98
		Bromofluorobenzene (Surrogate)	mg/kg	-	5.0	5	60 - 140	100
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	7.25	60 - 140	137

MATRIX SPIKES

Method: ME-(AU)-[ENV]AN420

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Meth	od: ME-(Al	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE194595.020	LB177271.004	Mercury	mg/kg	0.05	0.24	0.02579303624	0.2	108

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE194681.001	LB177290.024		Naphthalene	mg/kg	0.1	4.7	<0.1	4	117
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			Acenaphthylene	ma/ka	0.1	4.6	<0.1	4	116
			Acenaphthene	mg/kg	0.1	4.9	<0.1	4	123
			Fluorene	mg/kg	0.1	<0.1	<0.1	-	
			Phenanthrene	ma/ka	0.1	4 7	<0.1	4	119
			Anthracene	mg/kg	0.1	4.6	<0.1	4	116
			Fluoranthene	mg/kg	0.1	4.9	<0.1	4	122
			Pyrene	mg/kg	0.1	5.0	<0.1	4	125
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1		120
			Christian	mg/kg	0.1	<0.1	<0.1		
			Ponzo(h&i)fluoronthono	mg/kg	0.1	<0.1	<0.1		-
				nig/kg	0.1	<0.1	<0.1	-	-
			Benzo(k)huoranthene	під/кд	0.1	<0.1	<0.1	-	-
			Benzo(a)pyrene	mg/kg	0.1	4.3	<0.1	4	108
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	-	-
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.3</td><td><0.2</td><td>-</td><td>-</td></lor=0<>	TEQ (mg/kg)	0.2	4.3	<0.2	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>4.5</td><td><0.3</td><td>-</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	4.5	<0.3	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.4</td><td><0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	4.4	<0.2	-	-
			Total PAH (18)	mg/kg	0.8	38	<0.8	-	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	-	80
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	92
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	-	88
Total Recoverabl	e Elements in Soil/Wa	aste Solids/Mater	als by ICPOES				Method: ME-	(AU)-[ENV]	AN040/AN320
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE194595.020	LB177254.004		Arsenic, As	ma/ka	1	42	1.71304514776	50	81
			Cadmium. Cd	mg/kg	0.3	49	-0.00957008462	50	98
			Chromium Cr	ma/ka	0.3	70	26.35601305548	50	88
			Copper Cu	mg/kg	0.5	61	8 88582357371	50	103
			Nickel Ni	mg/kg	0.5	53	5 04821963934	50	97
			Lead Ph	mg/kg	1	62	15 09680849493	50	93
			Zinc Zn	mg/kg	2	58	7 12971304514	50	101
			200, 20	iiig/kg	2	50	7.12371304314	50	
TRH (Total Reco	verable Hydrocarbon								101
QC Sample		s) in Soil					Metho	od: ME-(AU)-[ENV]AN403
SE194681.001	Sample Number	s) in Soil	Parameter	Units	LOR	Result	<mark>Metho</mark> Original	<mark>od: ME-(AU</mark> Spike)-[ENV]AN403 Recovery%
	Sample Number LB177290.024	s) in Soil	Parameter TRH C10-C14	Units mg/kg	LOR 20	Result 36	Metho Original <20	od: ME-(AU Spike 40)-[ENV]AN403 Recovery% 90
	Sample Number LB177290.024	s) in Soil	Parameter TRH C10-C14 TRH C15-C28	Units mg/kg mg/kg	LOR 20 45	Result 36 <45	Metho Original <20 <45	<mark>od: ME-(AU</mark> Spike 40 40)-[ENV]AN403 Recovery% 90 100
	Sample Number LB177290.024	s) in Soil	Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36	Units mg/kg mg/kg mg/kg	LOR 20 45 45	Result 36 <45 <45	Metho Original <20 <45 <45	od: ME-(AU Spike 40 40 40)-[ENV]AN403 Recovery% 90 100 73
	Sample Number LB177290.024	s) in Soil	Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40	Units mg/kg mg/kg mg/kg	LOR 20 45 45 100	Result 36 <45 <45 <100	Metho Original <20 <45 <45 <100	od: ME-(AU Spike 40 40 40	-/ENV/AN403 Recovery% 90 100 73
	Sample Number LB177290.024	s) in Soil	Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total	Units mg/kg mg/kg mg/kg mg/kg	LOR 20 45 45 100 110	Result 36 <45 <45 <100 <110	Metho Original <20	Dd: ME-(AU Spike 40 40 40 -	-/ENV/AN403 Recovery% 90 100 73 -
	Sample Number LB177290.024	s) in Soil	Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands)	Units mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 20 45 45 100 110 210	Result 36 <45 <45 <100 <110 <210	Metho Original <20	od: ME-(AU Spike 40 40 - - -	
	Sample Number LB177290.024	s) in Soil	Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH >c10-C16	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 20 45 45 100 110 210 25	Result 36 <45 <45 <100 <110 <210 35	Metho Original <20	Dd: ME-(AU Spike 40 40 40 - - - 40	Initial P-[ENV]AN403 Recovery% 90 100 73 - - - 88
	Sample Number LB177290.024	s) in Soil	Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 20 45 45 100 110 210 25 25	Result 36 <45 <45 <100 <110 <210 35 35	Metho Criginal <20	Dd: ME-(AU Spike 40 40 40 - - - - 40	90 100 73 - - - 88 -
	Sample Number LB177290.024	s) in Soil	Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C34 (F3)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 20 45 45 100 110 210 25 25 90	Result 36 <45 <45 <100 <110 <210 35 35 <90	Metho <20	Dd: ME-(AU Spike 40 40 - - - 40 - - 40 - 40 - 40	90 100 73 - - - - - - - - - - - - -
	Sample Number LB177290.024	s) in Soil	Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH C10-C40 Total (F bands) TRH >C10-C16- TRH >C10-C16- C34 (F3) TRH >C10-C34 (C3) TRH >C10-C34 (C3)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 20 45 45 100 110 210 25 25 90 120	Result 36 <45 <45 <100 <110 <210 35 35 <90 <120	Metho Original <20	Dd: ME-(AU Spike 40 40 40 40 - - - 40 - 40 - 40 - 40 - 40 - 40 - 40 -	90 100 73 - - - - - - - - - - - - -
VOCia in Sali	Sample Number LB177290.024	s) in Soil	Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16- Naphthalene (F2) TRH >C10-C34 (F3) TRH >C34-C40 (F4)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 20 45 45 100 110 210 25 25 90 120	Result 36 <45	Original <20	od: ME-(AU Spike 40 40 - - - 40 - - 40 - - 40 -	90 100 73 - - - - - - - - - - - - -
VOC's in Soil	Sample Number LB177290.024	s) in Soil	Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C34 (F3) TRH >C34-C40 (F4)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 20 45 45 100 110 210 25 25 90 120	Result 36 <45	Metho Original <20	od: ME-(AU Spike 40 40 40 - - 40 - - 40 - - 40 - - 40 - - 40 - - - 40 - - - -	90 100 73 - - - - - - - - - - - - -
VOC's in Soil QC Sample	Sample Number LB177290.024 Sample Number	s) in Soil TRH F Bands	Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C38 Total TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16-O34 (F3) TRH >C16-C34 (F3) TRH >C34-C40 (F4)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 20 45 45 100 110 210 25 25 90 120 LOR	Result 36 <45	Metho Original <20	od: ME-(AU Spike 40 40 - - 40 - 40 - 40 - - 40 - - 40 - - 40 - - - 40 - - - -	P)-[ENV]AN403 Recovery% 90 100 73 - - - 88 88 - 90 - - - - - - - - - - - - - - - - -
VOC's in Soil QC Sample SE194681.001	Sample Number LB177290.024 Sample Number LB177289.004	s) in Soil TRH F Bands Monocyclic	Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16-O34 (F3) TRH >C10-C34 (F3) TRH >C34-C40 (F4)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 20 45 45 100 110 210 25 25 90 120 LOR 0.1	Result 36 <45	Metho Original <20	od: ME-(AU Spike 40 40 - - - 40 - - 40 - - xd: ME-(AU Spike 2.9	IOI P-[ENV]AN403 Recovery% 90 100 73 - - 88 - 90 -
VOC's in Soil QC Sample SE194681.001	Sample Number LB177290.024 Sample Number LB177289.004	s) in Soil TRH F Bands Monocyclic Aromatic	Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 20 45 45 100 110 210 25 25 90 120 LOR 0.1 0.1	Result 36 <45	Metho Original <20	od: ME-(AU Spike 40 40 - - 40 - 40 - - xd: ME-(AU Spike 2.9 2.9	[ENV]AN403 Recovery% 90 100 73 - <tr< td=""></tr<>
VOC's in Soil QC Sample SE194681.001	Sample Number LB177290.024 Sample Number LB177289.004	TRH F Bands Monocyclic Aromatic	Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16-O34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 20 45 45 100 110 210 25 25 90 120 LOR 0.1 0.1 0.1	Result 36 <45	Metho Criginal <20	Dd: ME-(AU Spike 40 40 - - - 40 - - 40 - - xd: ME-(AU Spike 2.9 2.9 2.9	>-[ENV]AN403 Recovery% 90 100 73 - - - 888 - - 90 - - - - - - 88 88 - - - 90 - - - - - 88 88 - - - - - - - - - - -

mg/kg

0.1

2.2

<0.1

2.9

o-xylene

74

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Method: ME-(AU)-[ENV]AN433 VOC's in Soil (continued) QC Sample Sample Number Original Spike Recovery% Parameter Units LOR Result SE194681.001 LB177289.004 Polycyclic Naphthalene mg/kg 0.1 <0.1 <0.1 Surrogates Dibromofluoromethane (Surrogate) mg/kg 4.5 4.4 90 d4-1,2-dichloroethane (Surrogate) 4.6 4.4 91 mg/kg d8-toluene (Surrogate) mg/kg -4.6 4.1 93 -Bromofluorobenzene (Surrogate) 4.6 4.0 92 mg/kg Totals Total Xylenes 0.3 6.5 <0.3 mg/kg Total BTEX 0.6 12 <0.6 mg/kg Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433 Original Spike Recovery% QC Sample Sample Number Result Units LOR Parameter SE194681.001 LB177289.004 TRH C6-C10 24.65 25 <25 <25 89 mg/kg TRH C6-C9 mg/kg 20 22 <20 23.2 94 Surrogates Dibromofluoromethane (Surrogate) mg/kg 4.5 4.4 90 d4-1,2-dichloroethane (Surrogate) 4.6 4.4 91 mg/kg 4.6 93 d8-toluene (Surrogate) mg/kg 4.1 Bromofluorobenzene (Surrogate) mg/kg 4.6 4.0 92 VPH F Benzene (F0) 0.1 1.8 <0.1 mg/kg Bands TRH C6-C10 minus BTEX (F1) mg/kg 25 <25 <25 7.25 131

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service .
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

Table QC1 - Containers, F	Preservation Requ	irements and Holding 1	limes - Soil
Parameter	Container	Preservation	Maximum Holding Time
Acid digestible metals and metalloids - Total and TCLP (As,Cd.,Cu,Cr,Ni,Pb,Zn)	Glass with Teflon Lid	Nil	6 months
Mercury	Glass with Teflon Lid	Nil	28 days
TPH / BTEX / VOC / SVOC / CHC	Glass with Teflon Lid	4°C, zero headspace	14 days
PAHs (total and TCLP)	Glass with Teflon Lid	4°C ¹	14 days
Phenols	Glass with Teflon Lid	4°C ¹	14 days
OCPs, OPPs and total PCBs	Glass with Teflon Lid	4°C ¹	14 days
Asbestos	Sealed Plastic Bag	Nil	N/A

Table QC2 - Containers, Preservation Requirements and Holding Times - Water								
Parameter	Container Volume (mL)	Preservation	Maximum Holding Time					
Heavy Metals	125mL Plastic	Field filtration 0.45µm HNO ₃ / 4°C	6 months					
Cyanide	125mL Amber Glass	pH > 12 NaOH / 4°C	6 months					
TPH (C6-C9) / BTEX / VOCs SVOCs / CHCs	4 x 43mL Glass	HCI / 4°C ¹	14 days					
TPH (C10-C36) / PAH / Phenolics OCP / OPP / TDS / pH	3 x 1L Amber Glass	None / 4°C ¹	28 days					

Notes: ¹ = Extraction within 14 days, Analysis within 40 days.

Table QC3 - Analytical Parameters, PQLs and Methods - Soil								
Parameter	Unit	PQL	Method Reference					
Metals in Soil								
Arsenic - As ¹	mg / kg	1	USEPA 200.7					
Cadmium - Cd ¹	mg / kg	0.5	USEPA 200.7					
Chromium - Cr ¹	mg / kg	1	USEPA 200.7					
Copper - Cu ¹	mg / kg	1	USEPA 200.7					
Lead - Pb ¹	mg / kg	1	USEPA 200.7					
Mercury - Hg ²	mg / kg	0.1	USEPA 7471A					
Nickel - Ni ¹	mg / kg	1	USEPA 200.7					
Zinc - Zn ¹	mg / kg	1	USEPA 200.7					
Total Petroleum Hydrocarbons (TPHs) in Soil								
C ₆ -C ₉ fraction	mg / kg	25	USEPA 8260					
C ₁₀ -C ₁₄ fraction	mg / kg	50	USEPA 8000					
C ₁₅ -C ₂₈ fraction	mg / kg	100	USEPA 8000					
C ₂₉ -C ₃₆ fraction	mg / kg	100	USEPA 8000					
	BTE	X in Soil						
Benzene	mg / kg	1	USEPA 8260					
Toluene	mg / kg	1	USEPA 8260					
Ethylbenzene	mg / kg	1	USEPA 8260					
m & p Xylene	mg / kg	2	USEPA 8260					
o- Xylene	mg / kg	1	USEPA 8260					
C	ther Organic C	ontaminants ir	ı Soil					
PAHs	mg / kg	0.05-0.2	USEPA 8270					
CHCs	mg / kg	1	USEPA 8260					
VOCs	mg / kg	1	USEPA 8260					
SVOCs	mg / kg	1	USEPA 8260					
OCPs	mg / kg	0.1	USEPA 8140, 8080					
OPPs	mg / kg	0.1	USEPA 8140, 8080					
PCBs	mg / kg	0.1	USEPA 8080					
Phenolics	mg / kg	5	APHA 5530					
Asbestos								
Asbestos	mg / kg	Presence / Absence	AS4964-2004					

Notes:

1. Acid Soluble Metals by ICP-AES

2. Total Recoverable Mercury

Parameter	Unit	PQL	Method	Parameter	Unit	PQL	Method
Heavy Metals			Chlorinated Hydrocarbons (CHCs)				
Antimony - Sb	μg/L	1	USEPA 200.8	1,2-dichlorobenzene	μg/L	1	USEPA 8260B
Arsenic - As	μg/L	1	USEPA 200.8	1,3-dichlorobenzene	μg/L	1	USEPA 8260B
Beryllium - Be	μg/L	0.5	USEPA 200.8	1,4-dichlorobenzene	μg/L	1	USEPA 8260B
Cadmium - Cd	μg/L	0.1	USEPA 200.8	1,2,3-trichlorobenzene	μg/L	1	USEPA 8260B
Chromium - Cr	μg/L	1	USEPA 200.8	1,2,4-trichlorobenzene	μg/L	1	USEPA 8260B
Cobalt - Co	μg/L	1	USEPA 200.8	Hexachlorobutadeine	μg/L	1	USEPA 8260B
Copper - Cu	μα/L	1	USEPA 200.8	1,1,2-trichloroethane	ιg/L	1	USEPA 8260B
Lead - Pb	ua/l	1	USEPA 200.8	Hexachloroethane	ug/l	10	USEPA 8270D
Mercury - Ha	ua/l	0.5	USEPA 7471A	Other CHCs	μα/l	1	USEPA 8260B
Molvbdenum - Mo	µg/=	1	USEPA 200.8	Volatile Organic Compounds (VOCs)		s (VOCs)	
Nickel - Ni	µg/L	1	USEPA 200.8	Aniline	ug/l	10	USEPA 8260B
Selenium - Se	µg/L	1	USEPA 200.8	2 4-dichloroaniline	μg/L	10	USEPA 8260B
Silver - Ag	µg/L	1	USEPA 200.8	3.4-dichloroaniline	µg/L	10	USEPA 8260B
Tin (inorg.) - Sn	µg/∟ ug/l	1		Nitrobenzene	µg/∟	50	
Niekol Ni	μg/∟ α/l	1			µg/∟ α/l	50	
Tino Zn	μg/L	1	USEPA 200.8		µg/∟ ∞″	50	
ZIIIC - ZII	μg/L	drocarb	03EPA 200.0	2,4,6-trinitrotoluene μ g/L 50 USEPA 8260B			USEPA 0200B
Total Petrol		urocarb		Frien		ipouna	>
C ₆ -C ₉ fraction	μg/L	10	USEPA 8220A / 8000	Phenol	μg/L	10	USEPA 8041
C ₁₀ -C ₁₄ fraction	μg/L	50	USEPA 8000	2-chlorophenol	μg/L	10	USEPA 8041
C ₁₅ -C ₂₈ fraction	μg/L	100	USEPA 8000	4-chlorophenol	μg/L	10	USEPA 8041
C ₂₉ -C ₃₆ fraction	μg/L	100	USEPA 8000	2, 4-dichlorophenol	μg/L	10	USEPA 8041
	BT	EX		2,4,6-trichlorophenol	μg/L	10	USEPA 8041
Benzene	μg/L	1	USEPA 8220A	2,3,4,6-tetrachlorophenol	μg/L	10	USEPA 8041
Toluene	μg/L	1	USEPA 8220A	Pentachlorophenol	μg/L	10	USEPA 8041
Ethylbenzene	μg/L	1	USEPA 8220A	2,4-dinitrophenol	μg/L	10	USEPA 8041
m- & p-Xylene	μg/L	2	USEPA 8220A	Miscellaneous Parameters		ers	
o-Xylene	μg/L	1	USEPA 8220A	Total Cyanide	μg/L	5	APHA 4500C&E-CN
Polyciclic Are	omatic H	lydrocai	rbons (PAHs)	Fluoride	μg/L	10	APHA 4500 F-C
PAHs	μg/L	0.1	USEPA 8270	Salinity (TDS)	mg/L	1	APHA 2510
Benzo(a)pyrene	μg/L	0.01	USEPA 8270	рН	units	0.1	APHA 4500H+
OrganoChlorine Pesticides (OCPs)		OrganoPhosphate Pesticides (OPPs)					
Aldrin	μg/L	0.001	USEPA 8081	Azinphos Methyl	μg/L	0.01	USEPA 8141
Chlordane	μg/L	0.001	USEPA 8081	Chloropyrifos	μg/L	0.01	USEPA 8141
DDT	μg/L	0.001	USEPA 8081	Diazinon	μg/L	0.01	USEPA 8141
Dieldrin	μg/L	0.001	USEPA 8081	Dimethoate	μg/L	0.01	USEPA 8141
Endosulfan	μg/L	0.001	USEPA 8081	Fenitrothion	μg/L	0.01	USEPA 8141
Endrin	μg/L	0.001	USEPA 8081	Malathion	μg/L	0.01	USEPA 8141
Heptachlor	μg/L	0.001	USEPA 8081	Parathion	μg/L	0.01	USEPA 8141
Lindane	μg/L	0.001	USEPA 8081	remepnos	μg/L	0.01	USEPA 8141
Ioxaphene	μg/L	0.001	USEPA 8081	Polychlorinated Biphenyls (PCBs)			
				Individual PCBs	μg/L	0.01	USEPA 8081

Table QC4 - Analytical Parameters, PQLs and Methods - Groundwater

Table QC5 - QC Sample Data Acceptance Criteria					
QC Sample Type	Method of Assessment	Acceptable Range			
	Field QC				
Blind Duplicates and Split Samples	The assessment of split duplicate is undertaken by calculating the Relative Percent Difference (RPD) of the duplicate concentration compared with the primary sample concentration. The RPD is defined as: $RPD = 100 \text{ x} \frac{ X_1 - X_2 }{\text{mean} (X1, X2)}$ Where: X ₁ and X ₂ are the concentrations of the primary and duplicate samples.	 The acceptable range depends upon the levels detected: 0-150% RPD (when the average concentration is <5 times the LOR/PQL) 0-75% RPD (when the average concentration is 5 to 10 times the LOR/PQL) 0-50% RPD (when the average concentration is >10 times the LOR/PQL) 			
Rinsate & Trip Blanks	Each blank is analysed as per the original samples.	Analytical Result <lor pql<="" td=""></lor>			
Laboratory prepared Trip Spike	The Trip Spike is analysed after returning from the field and the % recovery of the known spike is calculated.	70 - 130%			
	Laboratory QC				
Laboratory Duplicates	Assessment of Lab Duplicate RPD as per Blind Duplicates and Split Samples.	Lab Duplicate RPD < 15% (Inorganics) Lab Duplicate RPD < 30% (Organics) for sample results > 10 LOR			
Surrogates	Assessment is undertaken by determining the percent recovery of the known surrogate spike (SS) or addition to the sample.	at least 2 SS recoveries to be within 70-130% subject to matrix effects (Organics)			
Matrix Spikes Laboratory Control Samples	% Recovery = $100 \times \frac{C - A}{B}$ Where: A = Concentration of analyte determined in the original sample; B = Added Concentration; and C = Calculated Concentration.	80-120% (Inorganics / Metals) 60-140% (Organics) 10-140% (SVOC and Speciated Phenols) If the result is outside the above ranges, the result must be <3x Standard Deviation of the Historical Mean (calculated over the past 12 months).			
Sample Matrix Spike Duplicates	Recovery RPD	<30% (Inorganics & Organics)			
Calibration Check Standars	Continuous Calibration Verification (CCV)	CCV must be within ±15% (inorganics) CCV must be within ±25% (inorganics)			
Reagent, Method & Calibration Check Blanks	Each blank is analysed as per the original samples.	Analytical Result <lor pql<="" td=""></lor>			
Note: PQL - Laboratory Practica LOR = Limit of Reporting	al Quantitation Limit (PQL) or the minimum detection I	limit for a particular analyte.			